- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 7 (2010), pp. 423-444.
Published online: 2010-07
Cited by
- BibTex
- RIS
- TXT
Over the last decade the Lattice Boltzmann Method (LBM) has gained significant interest as a numerical solver for multiphase flows. However most of the LB variants proposed to date are still faced with discreteness artifacts in the form of spurious currents around fluid-fluid interfaces. In the recent past, Lee et al. have proposed a new LB scheme, based on a higher order differencing of the non-ideal forces, which appears to virtually free of spurious currents for a number of representative situations. In this paper, we analyze the Lee method and show that, although strictly speaking, it lacks exact mass conservation, in actual simulations, the mass-breaking terms exhibit a self-stabilizing dynamics which leads to their disappearance in the long-term evolution. This property is specifically demonstrated for the case of a moving droplet at low-Weber number, and contrasted with the behaviour of the Shan-Chen model. Furthermore, the Lee scheme is for the first time applied to the problem of gravity-driven Rayleigh-Taylor instability. Direct comparison with literature data for different values of the Reynolds number, shows again satisfactory agreement. A grid-sensitivity study shows that, while large grids are required to converge the fine-scale details, the large-scale features of the flow settle-down at relatively low resolution. We conclude that the Lee method provides a viable technique for the simulation of Rayleigh-Taylor instabilities on a significant parameter range of Reynolds and Weber numbers.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2009.09.018}, url = {http://global-sci.org/intro/article_detail/cicp/7637.html} }Over the last decade the Lattice Boltzmann Method (LBM) has gained significant interest as a numerical solver for multiphase flows. However most of the LB variants proposed to date are still faced with discreteness artifacts in the form of spurious currents around fluid-fluid interfaces. In the recent past, Lee et al. have proposed a new LB scheme, based on a higher order differencing of the non-ideal forces, which appears to virtually free of spurious currents for a number of representative situations. In this paper, we analyze the Lee method and show that, although strictly speaking, it lacks exact mass conservation, in actual simulations, the mass-breaking terms exhibit a self-stabilizing dynamics which leads to their disappearance in the long-term evolution. This property is specifically demonstrated for the case of a moving droplet at low-Weber number, and contrasted with the behaviour of the Shan-Chen model. Furthermore, the Lee scheme is for the first time applied to the problem of gravity-driven Rayleigh-Taylor instability. Direct comparison with literature data for different values of the Reynolds number, shows again satisfactory agreement. A grid-sensitivity study shows that, while large grids are required to converge the fine-scale details, the large-scale features of the flow settle-down at relatively low resolution. We conclude that the Lee method provides a viable technique for the simulation of Rayleigh-Taylor instabilities on a significant parameter range of Reynolds and Weber numbers.