- Journal Home
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
On Approximating Strongly Dispersion-Managed Solitons
- BibTex
- RIS
- TXT
@Article{CiCP-6-396,
author = {},
title = {On Approximating Strongly Dispersion-Managed Solitons},
journal = {Communications in Computational Physics},
year = {2009},
volume = {6},
number = {2},
pages = {396--405},
abstract = {
We use a generalized scaling invariance of the dispersion-managed nonlinear Schrödinger equation to derive an approximate function for strongly dispersion-managed solitons. We then analyze the regime in which the approximation is valid. Finally, we present a method for extracting the underlying soliton part from a noisy pulse, using the resulting approximate formula.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7686.html} }
TY - JOUR
T1 - On Approximating Strongly Dispersion-Managed Solitons
JO - Communications in Computational Physics
VL - 2
SP - 396
EP - 405
PY - 2009
DA - 2009/06
SN - 6
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/cicp/7686.html
KW -
AB -
We use a generalized scaling invariance of the dispersion-managed nonlinear Schrödinger equation to derive an approximate function for strongly dispersion-managed solitons. We then analyze the regime in which the approximation is valid. Finally, we present a method for extracting the underlying soliton part from a noisy pulse, using the resulting approximate formula.
Jinglai Li. (2020). On Approximating Strongly Dispersion-Managed Solitons.
Communications in Computational Physics. 6 (2).
396-405.
doi:
Copy to clipboard