- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this article, we give an introduction to the basic theory of dislocations and some dislocation models at different length scales. Dislocations are line defects in crystals. The continuum theory of dislocations works well at the length scale of several lattice constants away from the dislocations. In the region surrounding the dislocations (core region), the crystal lattice is heavily distorted, and atomistic models are used to describe the atomic arrangement and related properties. The Peierls-Nabarro models of dislocations incorporate the atomic features into the continuum theory, therefore provide an alternative way to understand the dislocation core properties. The numerical simulation of the collective motion and interactions of dislocations, known as dislocation dynamics, is becoming a more and more important tool for the investigation of the plastic behaviors of materials. Several simulation methods for dislocation dynamics are also reviewed in this article.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7962.html} }In this article, we give an introduction to the basic theory of dislocations and some dislocation models at different length scales. Dislocations are line defects in crystals. The continuum theory of dislocations works well at the length scale of several lattice constants away from the dislocations. In the region surrounding the dislocations (core region), the crystal lattice is heavily distorted, and atomistic models are used to describe the atomic arrangement and related properties. The Peierls-Nabarro models of dislocations incorporate the atomic features into the continuum theory, therefore provide an alternative way to understand the dislocation core properties. The numerical simulation of the collective motion and interactions of dislocations, known as dislocation dynamics, is becoming a more and more important tool for the investigation of the plastic behaviors of materials. Several simulation methods for dislocation dynamics are also reviewed in this article.