@Article{JMS-52-38, author = {Cheng , Jinfa}, title = {On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem}, journal = {Journal of Mathematical Study}, year = {2019}, volume = {52}, number = {1}, pages = {38--52}, abstract = {

In this paper, a generalized multivariate fractional Taylor's and Cauchy's  mean value theorem of the kind
$$f(x,y) = \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}}  + R_n^\alpha (\xi,\eta),\qquad\frac{{f(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }}{{g(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}g({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }} = \frac{{R_n^\alpha (\xi ,\eta )}}{{T_n^\alpha (\xi ,\eta )}},$$

where $0<\alpha \le 1$, is established. Such expression is precisely the classical Taylor's and Cauchy's mean value theorem in the particular case $\alpha=1$. In addition, detailed expressions for $R_n^\alpha (\xi,\eta)$ and $T_n^\alpha (\xi,\eta)$ involving the sequential Caputo fractional derivative are also given.

}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v52n1.19.04}, url = {http://global-sci.org/intro/article_detail/jms/13047.html} }