@Article{CiCP-31-449, author = {Nastasi , GiovanniCamiola , V. Dario and Romano , Vittorio}, title = {Direct Simulation of Charge Transport in Graphene Nanoribbons}, journal = {Communications in Computational Physics}, year = {2022}, volume = {31}, number = {2}, pages = {449--494}, abstract = {

Graphene nanoribbons are considered as one of the most promising ways to design electron devices where the active area is made of graphene. In fact, graphene nanoribbons present a gap between the valence and the conduction bands as in standard semiconductors such as Si or GaAs, at variance with large area graphene which is gapless, a feature that hampers a good performance of graphene field effect transistors.
To use graphene nanoribbons as a semiconductor, an accurate analysis of their electron properties is needed. Here, electron transport in graphene nanoribbons is investigated by solving the semiclassical Boltzmann equation with a discontinuous Galerkin method. All the electron-phonon scattering mechanisms are included. The adopted energy band structure is that devised in [1] while according to [2] the edge effects are described as an additional scattering stemming from the Berry-Mondragon model which is valid in presence of edge disorder. With this approach a spacial 1D transport problem has been solved, even if it remains two dimensional in the wave-vector space. A degradation of charge velocities, and consequently of the mobilities, is found by reducing the nanoribbon width due mainly to the edge scattering.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0032}, url = {http://global-sci.org/intro/article_detail/cicp/20212.html} }