@Article{JCM-23-441, author = {}, title = {A Mixed Finite Element Method for the Contact Problem in Elasticity}, journal = {Journal of Computational Mathematics}, year = {2005}, volume = {23}, number = {4}, pages = {441--448}, abstract = {
Based on the analysis of [7] and [10], we present the mixed finite element approximation of the variational inequality resulting from the contact problem in elasticity. The convergence rate of the stress and displacement field are both improved from $\mathcal{O}(h^{3/4})$ to quasi-optimal $\mathcal{O}(h|logh|^{1/4})$. If stronger but reasonable regularity is available, the convergence rate can be optimal $\mathcal{O}(h)$.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8830.html} }