TY - JOUR T1 - Mortar Finite Volume Method with Adini Element for Biharmonic Problem AU - Bi , Chunjia AU - Li , Likang JO - Journal of Computational Mathematics VL - 3 SP - 475 EP - 488 PY - 2004 DA - 2004/06 SN - 22 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/10320.html KW - Mortar finite volume method, Adini element, Biharmonic problem. AB -

In this paper, we construct and analyse a mortar finite volume method for the discretization for the biharmonic problem in $R^2$. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order $H^2$-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.