TY - JOUR T1 - Robust Semi-Discrete and Fully Discrete Hybrid Stress Finite Element Methods for Elastodynamic Problems AU - Xu , Xiaojing AU - Xie , Xiaoping JO - Advances in Applied Mathematics and Mechanics VL - 2 SP - 324 EP - 348 PY - 2018 DA - 2018/05 SN - 9 DO - http://doi.org/10.4208/aamm.2015.m1326 UR - https://global-sci.org/intro/article_detail/aamm/12151.html KW - Elastodynamic problem, hybrid stress finite element, semi-discrete, fully discrete, error estimate. AB -
This paper analyzes semi-discrete and fully discrete hybrid stress quadrilateral finite element methods for 2-dimensional linear elastodynamic problems. The methods use a 4-node hybrid stress quadrilateral element in the space discretization. In the fully discrete scheme, an implicit second-order scheme is adopted in the time discretization. We derive optimal a priori error estimates for the two schemes and an unconditional stability result for the fully discrete scheme. Numerical experiments confirm the theoretical results.