TY - JOUR
T1 - An Identity with Skew Derivations on Lie Ideals
AU - Wang , Zhengping
AU - Ur Nadeem , Rehman
AU - Huang , Shuliang
JO - Communications in Mathematical Research
VL - 1
SP - 83
EP - 87
PY - 2021
DA - 2021/03
SN - 32
DO - http://doi.org/10.13447/j.1674-5647.2016.01.06
UR - https://global-sci.org/intro/article_detail/cmr/18665.html
KW - skew derivation, generalized polynomial identity, Lie ideal, prime ring.
AB - Let $R$ be a 2-torsion free prime ring and $L$ a noncommutative Lie ideal
of $R$. Suppose that $(d, σ)$ is a skew derivation of $R$ such that $x^s
d(x)x^t = 0$ for all $x ∈ L$, where $s, t$ are fixed non-negative integers. Then $d = 0$.