TY - JOUR T1 - Symmetry and Uniqueness of Solutions of an Integral System AU - Zhengce Zhang & Minji Jiang JO - Journal of Partial Differential Equations VL - 4 SP - 351 EP - 360 PY - 2011 DA - 2011/11 SN - 24 DO - http://doi.org/10.4208/jpde.v24.n4.6 UR - https://global-sci.org/intro/article_detail/jpde/5216.html KW - Radial symmetry KW - uniqueness KW - integral system KW - moving plane method AB -
In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the uniqueness result for a special case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.