TY - JOUR T1 - Lp-Lq Estimates for a Linear Perturbed Klein-Gordon Equation AU - Chunlai Mu JO - Journal of Partial Differential Equations VL - 4 SP - 341 EP - 350 PY - 1995 DA - 1995/08 SN - 8 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jpde/5666.html KW - L^p-L^q estimates KW - Klein-Gordon equation KW - perturbed potential AB - We consider L^p-L^q estimates for the solution u(t,x) to tbe following perturbed Klein-Gordon equation ∂_{tt}u - Δu + u + V(x)u = 0 \qquad x∈ R^n, n ≥ 3 u(x,0) = 0, ∂_tu(x,0) = f(x) We assume that the potential V(x) and the initial data f(x) are compact, and V(x) is sufficiently small, then the solution u(t,x) of the above problem satisfies ||u(t)||_q ≤ Ct^{-a}||f||_p for t > 1 where a is the piecewise-linear function of 1/p and 1/q.