- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Existence and Ergodicity for the Two-Dimensional Stochastic Boussinesq Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-15-715,
author = {Li , Yong and Trenchea , Catalin},
title = {Existence and Ergodicity for the Two-Dimensional Stochastic Boussinesq Equation},
journal = {International Journal of Numerical Analysis and Modeling},
year = {2018},
volume = {15},
number = {4-5},
pages = {715--728},
abstract = {
The existence of solutions to the Boussinesq system driven by random exterior forcing terms both in the velocity field and the temperature is proven using a semigroup approach. We also obtain the existence and uniqueness of an invariant measure via coupling methods.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/12539.html} }
TY - JOUR
T1 - Existence and Ergodicity for the Two-Dimensional Stochastic Boussinesq Equation
AU - Li , Yong
AU - Trenchea , Catalin
JO - International Journal of Numerical Analysis and Modeling
VL - 4-5
SP - 715
EP - 728
PY - 2018
DA - 2018/04
SN - 15
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/12539.html
KW - Stochastic Boussinesq equation, invariant measure, coupling, ergodicity.
AB -
The existence of solutions to the Boussinesq system driven by random exterior forcing terms both in the velocity field and the temperature is proven using a semigroup approach. We also obtain the existence and uniqueness of an invariant measure via coupling methods.
Yong Li & Catalin Trenchea. (2020). Existence and Ergodicity for the Two-Dimensional Stochastic Boussinesq Equation.
International Journal of Numerical Analysis and Modeling. 15 (4-5).
715-728.
doi:
Copy to clipboard