- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We present discrete energy decay results for the Yee scheme applied to Maxwell's equations in Debye and Lorentz dispersive media. These estimates provide stability conditions for the Yee scheme in the corresponding media. In particular, we show that the stability conditions are the same as those for the Yee scheme in a nondispersive dielectric. However, energy decay for the Maxwell-Debye and Maxwell-Lorentz models indicate that the Yee schemes are dissipative. The energy decay results are then used to prove the convergence of the Yee schemes for the dispersive models. We also show that the Yee schemes preserve the Gauss divergence laws on its discrete mesh. Numerical simulations are provided to illustrate the theoretical results.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/546.html} }We present discrete energy decay results for the Yee scheme applied to Maxwell's equations in Debye and Lorentz dispersive media. These estimates provide stability conditions for the Yee scheme in the corresponding media. In particular, we show that the stability conditions are the same as those for the Yee scheme in a nondispersive dielectric. However, energy decay for the Maxwell-Debye and Maxwell-Lorentz models indicate that the Yee schemes are dissipative. The energy decay results are then used to prove the convergence of the Yee schemes for the dispersive models. We also show that the Yee schemes preserve the Gauss divergence laws on its discrete mesh. Numerical simulations are provided to illustrate the theoretical results.