- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop pollution-free finite difference schemes for solving the non-homogeneous Helmholtz equation in one dimension. A family of high-order algorithms is derived by applying the Taylor expansion and imposing the conditions that the resulting finite difference schemes satisfied the original equation and the boundary conditions to certain degrees. The most attractive features of the proposed schemes are: first, the new difference schemes have a $2n$-order of rate of convergence and are pollution-free. Hence, the error is bounded even for the equation at high wave numbers. Secondly, the resulting difference scheme is simple, namely it has the same structure as the standard three-point central differencing regardless of the order of accuracy. Convergence analysis is presented, and numerical simulations are reported for the non-homogeneous Helmholtz equation with both constant and varying wave numbers. The computational results clearly confirm the superior performance of the proposed schemes.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/552.html} }In this paper, we develop pollution-free finite difference schemes for solving the non-homogeneous Helmholtz equation in one dimension. A family of high-order algorithms is derived by applying the Taylor expansion and imposing the conditions that the resulting finite difference schemes satisfied the original equation and the boundary conditions to certain degrees. The most attractive features of the proposed schemes are: first, the new difference schemes have a $2n$-order of rate of convergence and are pollution-free. Hence, the error is bounded even for the equation at high wave numbers. Secondly, the resulting difference scheme is simple, namely it has the same structure as the standard three-point central differencing regardless of the order of accuracy. Convergence analysis is presented, and numerical simulations are reported for the non-homogeneous Helmholtz equation with both constant and varying wave numbers. The computational results clearly confirm the superior performance of the proposed schemes.