- Journal Home
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Locating Natural Superconvergent Points of Finite Element Methods in 3D
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-2-19,
author = {},
title = {Locating Natural Superconvergent Points of Finite Element Methods in 3D},
journal = {International Journal of Numerical Analysis and Modeling},
year = {2005},
volume = {2},
number = {1},
pages = {19--30},
abstract = {
In [20], we analytically identified natural superconvergent points of function values and gradients for several popular three-dimensional polynomial finite elements via an orthogonal decomposition. This paper focuses on the detailed process for determining the superconvergent points of pentahedral and tetrahedral elements.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/917.html} }
TY - JOUR
T1 - Locating Natural Superconvergent Points of Finite Element Methods in 3D
JO - International Journal of Numerical Analysis and Modeling
VL - 1
SP - 19
EP - 30
PY - 2005
DA - 2005/02
SN - 2
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/917.html
KW - finite element methods, three-dimensional problems, natural superconvergence, pentahedral elements and tetrahedral elements.
AB -
In [20], we analytically identified natural superconvergent points of function values and gradients for several popular three-dimensional polynomial finite elements via an orthogonal decomposition. This paper focuses on the detailed process for determining the superconvergent points of pentahedral and tetrahedral elements.
Z. Zhang & R. Lin. (1970). Locating Natural Superconvergent Points of Finite Element Methods in 3D.
International Journal of Numerical Analysis and Modeling. 2 (1).
19-30.
doi:
Copy to clipboard