- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Smoothing Levenberg-Marquardt Type Method for LCP
- BibTex
- RIS
- TXT
@Article{JCM-22-735,
author = {},
title = {A Smoothing Levenberg-Marquardt Type Method for LCP},
journal = {Journal of Computational Mathematics},
year = {2004},
volume = {22},
number = {5},
pages = {735--752},
abstract = { In this paper, we convert the linear complementarity problem to a system of semismooth nonlinear equations by using smoothing technique. Then we use Levenberg-Marquardt type method to solve this system. Taking advantage of the new results obtained by Dan, Yamashita and Fukushima [11, 33], the global and local superlinear convergence properties of the method are obtained under very mild conditions. Especially, the algorithm is locally superlinearly convergent under the assumption of either strict complementarity or certain nonsingularity. Preliminary numerical experiments are reported to show the efficiency of the algorithm. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/10300.html}
}
TY - JOUR
T1 - A Smoothing Levenberg-Marquardt Type Method for LCP
JO - Journal of Computational Mathematics
VL - 5
SP - 735
EP - 752
PY - 2004
DA - 2004/10
SN - 22
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/10300.html
KW - LCP
KW - Levenberg-Marquardt method
KW - Smoothing technique
KW - Po matrix
KW - Superlinear convergence
AB - In this paper, we convert the linear complementarity problem to a system of semismooth nonlinear equations by using smoothing technique. Then we use Levenberg-Marquardt type method to solve this system. Taking advantage of the new results obtained by Dan, Yamashita and Fukushima [11, 33], the global and local superlinear convergence properties of the method are obtained under very mild conditions. Especially, the algorithm is locally superlinearly convergent under the assumption of either strict complementarity or certain nonsingularity. Preliminary numerical experiments are reported to show the efficiency of the algorithm.
Ju-liang Zhang & Jian Chen. (1970). A Smoothing Levenberg-Marquardt Type Method for LCP.
Journal of Computational Mathematics. 22 (5).
735-752.
doi:
Copy to clipboard