- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Perturbation Method for the Numerical Solution of the Bernoulli Problem
- BibTex
- RIS
- TXT
@Article{JCM-26-23,
author = {},
title = {A Perturbation Method for the Numerical Solution of the Bernoulli Problem},
journal = {Journal of Computational Mathematics},
year = {2008},
volume = {26},
number = {1},
pages = {23--36},
abstract = { We consider the numerical solution of the free boundary Bernoulli problem by employing level set formulations. Using a perturbation technique, we derive a second order method that leads to a fast iteration solver. The iteration procedure is adapted in order to work in the case of topology changes. Various numerical experiments confirm the efficiency of the derived numerical method.},
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8608.html}
}
TY - JOUR
T1 - A Perturbation Method for the Numerical Solution of the Bernoulli Problem
JO - Journal of Computational Mathematics
VL - 1
SP - 23
EP - 36
PY - 2008
DA - 2008/02
SN - 26
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8608.html
KW - Bernoulli problem
KW - Free boundary
KW - Level sets
AB - We consider the numerical solution of the free boundary Bernoulli problem by employing level set formulations. Using a perturbation technique, we derive a second order method that leads to a fast iteration solver. The iteration procedure is adapted in order to work in the case of topology changes. Various numerical experiments confirm the efficiency of the derived numerical method.
Francois Bouchon, Stephane Clain & Rachid Touzani. (1970). A Perturbation Method for the Numerical Solution of the Bernoulli Problem.
Journal of Computational Mathematics. 26 (1).
23-36.
doi:
Copy to clipboard