- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Posteriori Estimator of Nonconforming Finite Element Method for Fourth Order Elliptic Perturbation Problems
- BibTex
- RIS
- TXT
@Article{JCM-26-554,
author = {},
title = {A Posteriori Estimator of Nonconforming Finite Element Method for Fourth Order Elliptic Perturbation Problems},
journal = {Journal of Computational Mathematics},
year = {2008},
volume = {26},
number = {4},
pages = {554--577},
abstract = { In this paper, we consider the nonconforming finite element approximations of fourth order elliptic perturbation problems in two dimensions. We present an a posteriori error estimator under certain conditions, and give an h-version adaptive algorithm based on the error estimation. The local behavior of the estimator is analyzed as well. This estimator works for several nonconforming methods, such as the modified Morley method and the modified Zienkiewicz method, and under some assumptions, it is an optimal one. Numerical examples are reported, with a linear stationary Cahn-Hilliard-type equation as a model problem.},
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8642.html}
}
TY - JOUR
T1 - A Posteriori Estimator of Nonconforming Finite Element Method for Fourth Order Elliptic Perturbation Problems
JO - Journal of Computational Mathematics
VL - 4
SP - 554
EP - 577
PY - 2008
DA - 2008/08
SN - 26
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8642.html
KW - Fourth order elliptic perturbation problems
KW - Nonconforming finite element method
KW - A posteriori error estimator
KW - Adaptive algorithm
KW - Local behavior
AB - In this paper, we consider the nonconforming finite element approximations of fourth order elliptic perturbation problems in two dimensions. We present an a posteriori error estimator under certain conditions, and give an h-version adaptive algorithm based on the error estimation. The local behavior of the estimator is analyzed as well. This estimator works for several nonconforming methods, such as the modified Morley method and the modified Zienkiewicz method, and under some assumptions, it is an optimal one. Numerical examples are reported, with a linear stationary Cahn-Hilliard-type equation as a model problem.
Shuo Zhang & Ming Wang. (1970). A Posteriori Estimator of Nonconforming Finite Element Method for Fourth Order Elliptic Perturbation Problems.
Journal of Computational Mathematics. 26 (4).
554-577.
doi:
Copy to clipboard