- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Conjugate-Symplecticity of Linear Multistep Methods
- BibTex
- RIS
- TXT
@Article{JCM-26-657,
author = {},
title = {Conjugate-Symplecticity of Linear Multistep Methods},
journal = {Journal of Computational Mathematics},
year = {2008},
volume = {26},
number = {5},
pages = {657--659},
abstract = { For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded-ness of parasitic solution components is not addressed.},
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8649.html}
}
TY - JOUR
T1 - Conjugate-Symplecticity of Linear Multistep Methods
JO - Journal of Computational Mathematics
VL - 5
SP - 657
EP - 659
PY - 2008
DA - 2008/10
SN - 26
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8649.html
KW - Linear multistep method
KW - Underlying one-step method
KW - Conjugate-symplecticity
KW - Symmetry
AB - For the numerical treatment of Hamiltonian differential equations, symplectic integrators are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded-ness of parasitic solution components is not addressed.
Ernst Hairer. (1970). Conjugate-Symplecticity of Linear Multistep Methods.
Journal of Computational Mathematics. 26 (5).
657-659.
doi:
Copy to clipboard