- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Convergence Analysis of a Mixed Finite Element for the Stokes Problem on Anisotropic Meshes
- BibTex
- RIS
- TXT
@Article{JCM-26-740,
author = {},
title = {Convergence Analysis of a Mixed Finite Element for the Stokes Problem on Anisotropic Meshes},
journal = {Journal of Computational Mathematics},
year = {2008},
volume = {26},
number = {5},
pages = {740--755},
abstract = { The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works.},
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8656.html}
}
TY - JOUR
T1 - Convergence Analysis of a Mixed Finite Element for the Stokes Problem on Anisotropic Meshes
JO - Journal of Computational Mathematics
VL - 5
SP - 740
EP - 755
PY - 2008
DA - 2008/10
SN - 26
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8656.html
KW - Mixed finite element
KW - Stokes problem
KW - Anisotropic meshes
KW - Superconvergence
KW - Shape regularity assumption and inverse assumption
AB - The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works.
Qingshan Li, Huixia Sun & Shaochun Chen. (1970). Convergence Analysis of a Mixed Finite Element for the Stokes Problem on Anisotropic Meshes.
Journal of Computational Mathematics. 26 (5).
740-755.
doi:
Copy to clipboard