Volume 24, Issue 1
Natural Superconvergent Points of Equilateral Triangular Finite Elements — a Numerical Example

Zhi-min Zhang & Ahmed Naga

DOI:

J. Comp. Math., 24 (2006), pp. 19-24

Published online: 2006-02

Preview Full PDF 565 2078
Export citation
  • Abstract

A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation.

  • Keywords

Finite element method Superconvergence Triangular mesh Equilateral

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JCM-24-19, author = {}, title = {Natural Superconvergent Points of Equilateral Triangular Finite Elements — a Numerical Example}, journal = {Journal of Computational Mathematics}, year = {2006}, volume = {24}, number = {1}, pages = {19--24}, abstract = { A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation. }, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8730.html} }
TY - JOUR T1 - Natural Superconvergent Points of Equilateral Triangular Finite Elements — a Numerical Example JO - Journal of Computational Mathematics VL - 1 SP - 19 EP - 24 PY - 2006 DA - 2006/02 SN - 24 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/8730.html KW - Finite element method KW - Superconvergence KW - Triangular mesh KW - Equilateral AB - A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation.
Zhi-min Zhang & Ahmed Naga. (1970). Natural Superconvergent Points of Equilateral Triangular Finite Elements — a Numerical Example. Journal of Computational Mathematics. 24 (1). 19-24. doi:
Copy to clipboard
The citation has been copied to your clipboard