- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Convergence Analysis for a Nonconforming Membrane Element on Anisotropic Meshes
- BibTex
- RIS
- TXT
@Article{JCM-23-373,
author = {},
title = {Convergence Analysis for a Nonconforming Membrane Element on Anisotropic Meshes},
journal = {Journal of Computational Mathematics},
year = {2005},
volume = {23},
number = {4},
pages = {373--382},
abstract = { Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and $L^{2}$-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8823.html}
}
TY - JOUR
T1 - Convergence Analysis for a Nonconforming Membrane Element on Anisotropic Meshes
JO - Journal of Computational Mathematics
VL - 4
SP - 373
EP - 382
PY - 2005
DA - 2005/08
SN - 23
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8823.html
KW - Anisotropic mesh
KW - Nonconforming finite element
KW - Optimal estimate
AB - Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and $L^{2}$-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis.
Dong-Yang Shi, Shao-Chun Chen & Ichiro Hagiwara. (1970). Convergence Analysis for a Nonconforming Membrane Element on Anisotropic Meshes.
Journal of Computational Mathematics. 23 (4).
373-382.
doi:
Copy to clipboard