- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
On Stable Perturbations of the Stiffly Weighted Pseudoinverse and Weighted Least Squares Problem
- BibTex
- RIS
- TXT
@Article{JCM-23-527,
author = {},
title = {On Stable Perturbations of the Stiffly Weighted Pseudoinverse and Weighted Least Squares Problem},
journal = {Journal of Computational Mathematics},
year = {2005},
volume = {23},
number = {5},
pages = {527--536},
abstract = { In this paper we study perturbations of the stiffly weighted pseudoinverse $ (W^{1\over 2}A)^\dag W^{1\over 2}$ and the related stiffly weighted least squares problem, where both the matrices $A$ and $W$ are given with $W$ positive diagonal and severely stiff. We show that the perturbations to the stiffly weighted pseudoinverse and the related stiffly weighted least squares problem are stable, if and only if the perturbed matrices $\widehat A=A+\delta A$ satisfy several row rank preserving conditions. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8837.html}
}
TY - JOUR
T1 - On Stable Perturbations of the Stiffly Weighted Pseudoinverse and Weighted Least Squares Problem
JO - Journal of Computational Mathematics
VL - 5
SP - 527
EP - 536
PY - 2005
DA - 2005/10
SN - 23
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8837.html
KW - Stiffly
KW - Weighted pseudoinverse
KW - Weighted least squares
KW - Perturbation
KW - Stability
AB - In this paper we study perturbations of the stiffly weighted pseudoinverse $ (W^{1\over 2}A)^\dag W^{1\over 2}$ and the related stiffly weighted least squares problem, where both the matrices $A$ and $W$ are given with $W$ positive diagonal and severely stiff. We show that the perturbations to the stiffly weighted pseudoinverse and the related stiffly weighted least squares problem are stable, if and only if the perturbed matrices $\widehat A=A+\delta A$ satisfy several row rank preserving conditions.
Mu-Sheng Wei. (1970). On Stable Perturbations of the Stiffly Weighted Pseudoinverse and Weighted Least Squares Problem.
Journal of Computational Mathematics. 23 (5).
527-536.
doi:
Copy to clipboard