- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Numerical Approximation of Transcritical Simple Bifurcation Point of the Navier-Stokes Equations
- BibTex
- RIS
- TXT
@Article{JCM-22-501,
author = {},
title = {Numerical Approximation of Transcritical Simple Bifurcation Point of the Navier-Stokes Equations},
journal = {Journal of Computational Mathematics},
year = {2004},
volume = {22},
number = {4},
pages = {501--508},
abstract = { The extended system of nondegenerate simple bifurcation point of the Navier-Stokes equations is constructed in this paper, due to its derivative has a block lower triangular form, we design a Newton-like method, using the extended system and splitting iterative technique to compute transcritical nondegenerate simple bifurcation point, we not only reduces computational complexity, but also obtain quadratic convergence of algorithm. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8859.html}
}
TY - JOUR
T1 - Numerical Approximation of Transcritical Simple Bifurcation Point of the Navier-Stokes Equations
JO - Journal of Computational Mathematics
VL - 4
SP - 501
EP - 508
PY - 2004
DA - 2004/08
SN - 22
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8859.html
KW - Nondegenerate simple bifurcation point
KW - Splitting iterative method
KW - The extended system
AB - The extended system of nondegenerate simple bifurcation point of the Navier-Stokes equations is constructed in this paper, due to its derivative has a block lower triangular form, we design a Newton-like method, using the extended system and splitting iterative technique to compute transcritical nondegenerate simple bifurcation point, we not only reduces computational complexity, but also obtain quadratic convergence of algorithm.
He-yuan Wang & Kai-tai Li . (1970). Numerical Approximation of Transcritical Simple Bifurcation Point of the Navier-Stokes Equations.
Journal of Computational Mathematics. 22 (4).
501-508.
doi:
Copy to clipboard