- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Mathematical Analysis for Quadrilateral Rotated Q1 Element III: the Effect of Numerical Integration
- BibTex
- RIS
- TXT
@Article{JCM-21-287,
author = {},
title = {Mathematical Analysis for Quadrilateral Rotated Q1 Element III: the Effect of Numerical Integration},
journal = {Journal of Computational Mathematics},
year = {2003},
volume = {21},
number = {3},
pages = {287--294},
abstract = { This is the third part of the paper for the rotated Q1 nonconforming element on quadrilateral meshes for general second order elliptic problems. Some optimal numerical formulas are presented and analyzed. The novelty is that it includes a formula with only two sampling points which excludes even a Q1 unisolvent set. It is the optimal numerical integration formula over a quadrilateral mesh wigh least sampling points up to now. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8880.html}
}
TY - JOUR
T1 - Mathematical Analysis for Quadrilateral Rotated Q1 Element III: the Effect of Numerical Integration
JO - Journal of Computational Mathematics
VL - 3
SP - 287
EP - 294
PY - 2003
DA - 2003/06
SN - 21
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8880.html
KW - Quadrilateral rotated Q1 element
KW - Numerical quadrature
AB - This is the third part of the paper for the rotated Q1 nonconforming element on quadrilateral meshes for general second order elliptic problems. Some optimal numerical formulas are presented and analyzed. The novelty is that it includes a formula with only two sampling points which excludes even a Q1 unisolvent set. It is the optimal numerical integration formula over a quadrilateral mesh wigh least sampling points up to now.
Ping-bing Ming & Zhong-ci Shi . (1970). Mathematical Analysis for Quadrilateral Rotated Q1 Element III: the Effect of Numerical Integration.
Journal of Computational Mathematics. 21 (3).
287-294.
doi:
Copy to clipboard