- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Laguerre Pseudospectral Method for Nonlinear Partial Differential Equations
- BibTex
- RIS
- TXT
@Article{JCM-20-413,
author = {},
title = {Laguerre Pseudospectral Method for Nonlinear Partial Differential Equations},
journal = {Journal of Computational Mathematics},
year = {2002},
volume = {20},
number = {4},
pages = {413--428},
abstract = { The Laguerre Gauss-Radau interpolation is investigated. Some approximation results are obtained. As an example, the Laguerre pseudospectral scheme is constructed for the BBM equation. The stability and the convergence of proposed scheme are proved. The numerical results show the high accuracy of this approach. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8928.html}
}
TY - JOUR
T1 - Laguerre Pseudospectral Method for Nonlinear Partial Differential Equations
JO - Journal of Computational Mathematics
VL - 4
SP - 413
EP - 428
PY - 2002
DA - 2002/08
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8928.html
KW - Laguerre pseudospectral method
KW - Nonlinear differential equations
AB - The Laguerre Gauss-Radau interpolation is investigated. Some approximation results are obtained. As an example, the Laguerre pseudospectral scheme is constructed for the BBM equation. The stability and the convergence of proposed scheme are proved. The numerical results show the high accuracy of this approach.
Cheng Long Xu & Ben Yu Guo. (1970). Laguerre Pseudospectral Method for Nonlinear Partial Differential Equations.
Journal of Computational Mathematics. 20 (4).
413-428.
doi:
Copy to clipboard