- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Note on the Nonlinear Conjugate Gradient Method
- BibTex
- RIS
- TXT
@Article{JCM-20-575,
author = {},
title = {A Note on the Nonlinear Conjugate Gradient Method},
journal = {Journal of Computational Mathematics},
year = {2002},
volume = {20},
number = {6},
pages = {575--582},
abstract = { The conjugate gradient method for unconstrained optimization problems varies with a scalar. In this note, a general condition concerning the scalar is given, which ensures the global convergence of the method in the case of strong Wolfe line searches.It is also discussed how to rse the result to obtain the convergence of the famous Fletcher-Reeves, and Polak-Ribi$\acute{e}$re-Polyak sonjugate gradient methods. That the condition cannot be relaxed in some sense iis mentioned. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8942.html}
}
TY - JOUR
T1 - A Note on the Nonlinear Conjugate Gradient Method
JO - Journal of Computational Mathematics
VL - 6
SP - 575
EP - 582
PY - 2002
DA - 2002/12
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8942.html
KW - Unconstrained optimization
KW - Conjugate gradient
KW - Line search
KW - Global convergence
AB - The conjugate gradient method for unconstrained optimization problems varies with a scalar. In this note, a general condition concerning the scalar is given, which ensures the global convergence of the method in the case of strong Wolfe line searches.It is also discussed how to rse the result to obtain the convergence of the famous Fletcher-Reeves, and Polak-Ribi$\acute{e}$re-Polyak sonjugate gradient methods. That the condition cannot be relaxed in some sense iis mentioned.
Yu Hong Dai & Ya Xiang Yuan. (1970). A Note on the Nonlinear Conjugate Gradient Method.
Journal of Computational Mathematics. 20 (6).
575-582.
doi:
Copy to clipboard