- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Von Neumann Stability Analysis of Symplectic Integrators Applied to Hamiltonian PDEs
- BibTex
- RIS
- TXT
@Article{JCM-20-611,
author = {},
title = {Von Neumann Stability Analysis of Symplectic Integrators Applied to Hamiltonian PDEs},
journal = {Journal of Computational Mathematics},
year = {2002},
volume = {20},
number = {6},
pages = {611--618},
abstract = { Symplectic integration of separable Hamiltonian ordinary and partial differential equations is discussed. A von Neumann analysis is performed to achieve general linear stability criteria for symplectic methods applied to a restricted class of Hamiltonian PDE to form a system of Hamiltonian ODEs to which a symplectic integrator can be applied. In this way stability criteria are achieved by considering the spectra of linearised Hamiltonian PDEs rather than spatisl step size. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/8946.html}
}
TY - JOUR
T1 - Von Neumann Stability Analysis of Symplectic Integrators Applied to Hamiltonian PDEs
JO - Journal of Computational Mathematics
VL - 6
SP - 611
EP - 618
PY - 2002
DA - 2002/12
SN - 20
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8946.html
KW - symplectic integration
KW - Hamiltonian PDEs
KW - linear stability
KW - von Neumann analysis
AB - Symplectic integration of separable Hamiltonian ordinary and partial differential equations is discussed. A von Neumann analysis is performed to achieve general linear stability criteria for symplectic methods applied to a restricted class of Hamiltonian PDE to form a system of Hamiltonian ODEs to which a symplectic integrator can be applied. In this way stability criteria are achieved by considering the spectra of linearised Hamiltonian PDEs rather than spatisl step size.
Helen M. Regan. (1970). Von Neumann Stability Analysis of Symplectic Integrators Applied to Hamiltonian PDEs.
Journal of Computational Mathematics. 20 (6).
611-618.
doi:
Copy to clipboard