- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Computation of Nonequilibrium Hypersonic Flow Over Concave Corners
- BibTex
- RIS
- TXT
@Article{JCM-19-617,
author = {},
title = {Computation of Nonequilibrium Hypersonic Flow Over Concave Corners},
journal = {Journal of Computational Mathematics},
year = {2001},
volume = {19},
number = {6},
pages = {617--628},
abstract = { This paper is devoted to computation of hypersonic flow of air with chemical reactions over concave corners. A technique combining smooth transformation of domain and implicit difference methods is used to overcome numerical dimculties associated with the lack of resolution behind the shock and near the body. The implicit treatment of right hand side terms is also an important part of our method. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9014.html}
}
TY - JOUR
T1 - Computation of Nonequilibrium Hypersonic Flow Over Concave Corners
JO - Journal of Computational Mathematics
VL - 6
SP - 617
EP - 628
PY - 2001
DA - 2001/12
SN - 19
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9014.html
KW - Shock fitting
KW - Smooth transformation of domain
KW - Finite difference method
KW - Implicit method
AB - This paper is devoted to computation of hypersonic flow of air with chemical reactions over concave corners. A technique combining smooth transformation of domain and implicit difference methods is used to overcome numerical dimculties associated with the lack of resolution behind the shock and near the body. The implicit treatment of right hand side terms is also an important part of our method.
Taehoon Park & You Lan Zhu. (1970). Computation of Nonequilibrium Hypersonic Flow Over Concave Corners.
Journal of Computational Mathematics. 19 (6).
617-628.
doi:
Copy to clipboard