- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
The GPL-Stability of Runge-Kutta Methods Fordelay Differential Systems
- BibTex
- RIS
- TXT
@Article{JCM-18-75,
author = {},
title = {The GPL-Stability of Runge-Kutta Methods Fordelay Differential Systems},
journal = {Journal of Computational Mathematics},
year = {2000},
volume = {18},
number = {1},
pages = {75--82},
abstract = { This paper deals with the GPL-stability of the Implicit Runge-Kutta methods for the numerical solutions of the systems of delay differential equations. We focus on the stability behaviour of the Implicit Runge-Kutta(IRK) methods in the solutions of the following test systems with a delay term $$y'(t) = Ly(t) + My(t-\tau), t\ge 0,$$ $$y(t)=\Phi(t), t\le 0,$$ where $L, M$ are $N \times N$ complex matrices, $\tau \gt 0$, $\Phi(t)$ is a given vector function. We shall show that the IRK methods is GPL-stable if and only if it is L-stable, when we use the IRK methods to the test systems above. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9024.html}
}
TY - JOUR
T1 - The GPL-Stability of Runge-Kutta Methods Fordelay Differential Systems
JO - Journal of Computational Mathematics
VL - 1
SP - 75
EP - 82
PY - 2000
DA - 2000/02
SN - 18
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9024.html
KW - Delay differential equation
KW - Implicit Runge-Kutta methods
KW - GPL- stability
AB - This paper deals with the GPL-stability of the Implicit Runge-Kutta methods for the numerical solutions of the systems of delay differential equations. We focus on the stability behaviour of the Implicit Runge-Kutta(IRK) methods in the solutions of the following test systems with a delay term $$y'(t) = Ly(t) + My(t-\tau), t\ge 0,$$ $$y(t)=\Phi(t), t\le 0,$$ where $L, M$ are $N \times N$ complex matrices, $\tau \gt 0$, $\Phi(t)$ is a given vector function. We shall show that the IRK methods is GPL-stable if and only if it is L-stable, when we use the IRK methods to the test systems above.
Biao Yang, Lin Qiu & Jiao-Xun Kuang. (1970). The GPL-Stability of Runge-Kutta Methods Fordelay Differential Systems.
Journal of Computational Mathematics. 18 (1).
75-82.
doi:
Copy to clipboard