- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
High Accuracy Analysis of the Wilson Element
- BibTex
- RIS
- TXT
@Article{JCM-17-113,
author = {},
title = {High Accuracy Analysis of the Wilson Element},
journal = {Journal of Computational Mathematics},
year = {1999},
volume = {17},
number = {2},
pages = {113--124},
abstract = { In this paper, the Wilson nonconforming finite element is considered for solving a class of second-order elliptic boundary value problems. Based on an asymptotic error expansion for the Wilson finite element, the global superconvergences, the local superconvergences and the defect correction schemes are presented. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9086.html}
}
TY - JOUR
T1 - High Accuracy Analysis of the Wilson Element
JO - Journal of Computational Mathematics
VL - 2
SP - 113
EP - 124
PY - 1999
DA - 1999/04
SN - 17
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9086.html
KW - Finite elements
KW - Defect correction
KW - Global superconvergence Wilsonelement
AB - In this paper, the Wilson nonconforming finite element is considered for solving a class of second-order elliptic boundary value problems. Based on an asymptotic error expansion for the Wilson finite element, the global superconvergences, the local superconvergences and the defect correction schemes are presented.
Ping Luo & Qun Lin. (1970). High Accuracy Analysis of the Wilson Element.
Journal of Computational Mathematics. 17 (2).
113-124.
doi:
Copy to clipboard