- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems
- BibTex
- RIS
- TXT
@Article{JCM-17-315,
author = {},
title = {A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems},
journal = {Journal of Computational Mathematics},
year = {1999},
volume = {17},
number = {3},
pages = {315--326},
abstract = { We propose a finite dimensional method to compute the solution of nonlinear ill-posed problems approximately and show that under certain conditions, the convergence can be guaranteed. Moreover, we obtain the rate of convergence of our method provided that the true solution satisfies suitable smoothness condition. Finally, we present two examples from the parameter estimation problems of differential equations and illustrate the applicability of our method. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9105.html}
}
TY - JOUR
T1 - A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems
JO - Journal of Computational Mathematics
VL - 3
SP - 315
EP - 326
PY - 1999
DA - 1999/06
SN - 17
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9105.html
KW -
AB - We propose a finite dimensional method to compute the solution of nonlinear ill-posed problems approximately and show that under certain conditions, the convergence can be guaranteed. Moreover, we obtain the rate of convergence of our method provided that the true solution satisfies suitable smoothness condition. Finally, we present two examples from the parameter estimation problems of differential equations and illustrate the applicability of our method.
Qi Nian Jin & Zong Yi Hou. (1970). A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems.
Journal of Computational Mathematics. 17 (3).
315-326.
doi:
Copy to clipboard