- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Structure-Preserving Discretization of Nonlinear Schrodinger Equation
- BibTex
- RIS
- TXT
@Article{JCM-17-553,
author = {},
title = {A Structure-Preserving Discretization of Nonlinear Schrodinger Equation},
journal = {Journal of Computational Mathematics},
year = {1999},
volume = {17},
number = {5},
pages = {553--560},
abstract = { This paper studies the geometric structure of nonlinear Schrodinger equation and from the view-point of preserving structure a kind of fully discrete schemes is presented for the numerical simulation of this important equation in quantum. It has been shown by theoretical anaysis and numerical experiments that such discrete schemes are quite satisfactory in keeping the desirable conservation properties and for simulating the long-time behaviour. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9125.html}
}
TY - JOUR
T1 - A Structure-Preserving Discretization of Nonlinear Schrodinger Equation
JO - Journal of Computational Mathematics
VL - 5
SP - 553
EP - 560
PY - 1999
DA - 1999/10
SN - 17
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9125.html
KW - Schrodinger equation
KW - Hamiltonian system
KW - Discrete schemes
AB - This paper studies the geometric structure of nonlinear Schrodinger equation and from the view-point of preserving structure a kind of fully discrete schemes is presented for the numerical simulation of this important equation in quantum. It has been shown by theoretical anaysis and numerical experiments that such discrete schemes are quite satisfactory in keeping the desirable conservation properties and for simulating the long-time behaviour.
Ming You Huang, Ru Qu & Cheng Chun Gong. (1970). A Structure-Preserving Discretization of Nonlinear Schrodinger Equation.
Journal of Computational Mathematics. 17 (5).
553-560.
doi:
Copy to clipboard