- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Penalty Technique for Nonlinear Complementarity Problems
- BibTex
- RIS
- TXT
@Article{JCM-16-40,
author = {},
title = {A Penalty Technique for Nonlinear Complementarity Problems},
journal = {Journal of Computational Mathematics},
year = {1998},
volume = {16},
number = {1},
pages = {40--50},
abstract = { In this paper, we first give a new equivalent optimization form to nonlinear complementarity problems and then establish a damped Newton method in which penalty technique is used. The subproblems of the method are lower-dimensional linear complementarity problems. We prove that the algorithm converges globally for strongly monotone complementarity problems. Under certain conditions, the method possesses quadratic convergence. Few numerical results are also reported. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9140.html}
}
TY - JOUR
T1 - A Penalty Technique for Nonlinear Complementarity Problems
JO - Journal of Computational Mathematics
VL - 1
SP - 40
EP - 50
PY - 1998
DA - 1998/02
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9140.html
KW - Optimization
KW - nonlinear complementarity
AB - In this paper, we first give a new equivalent optimization form to nonlinear complementarity problems and then establish a damped Newton method in which penalty technique is used. The subproblems of the method are lower-dimensional linear complementarity problems. We prove that the algorithm converges globally for strongly monotone complementarity problems. Under certain conditions, the method possesses quadratic convergence. Few numerical results are also reported.
Dong-hui Li & Jin-ping Zeng. (1970). A Penalty Technique for Nonlinear Complementarity Problems.
Journal of Computational Mathematics. 16 (1).
40-50.
doi:
Copy to clipboard