- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
An Economical Finite Element Scheme for Navier-Stokes Equations
- BibTex
- RIS
- TXT
@Article{JCM-5-135,
author = {Hou-De Han},
title = {An Economical Finite Element Scheme for Navier-Stokes Equations},
journal = {Journal of Computational Mathematics},
year = {1987},
volume = {5},
number = {2},
pages = {135--143},
abstract = { In this paper, a new finite element scheme for Navier-Stokes equations is proposed, in which three different partitions( in the two dimensional case) are used to construct finite element subspaces fo the velocity field and the pressure. The error estimate of the finite approximation is given. The precision of this new scheme has the same order as the scheme $Q_2/P_0$, but it is more economical that the scheme $Q_2/P_0$. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9538.html}
}
TY - JOUR
T1 - An Economical Finite Element Scheme for Navier-Stokes Equations
AU - Hou-De Han
JO - Journal of Computational Mathematics
VL - 2
SP - 135
EP - 143
PY - 1987
DA - 1987/05
SN - 5
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9538.html
KW -
AB - In this paper, a new finite element scheme for Navier-Stokes equations is proposed, in which three different partitions( in the two dimensional case) are used to construct finite element subspaces fo the velocity field and the pressure. The error estimate of the finite approximation is given. The precision of this new scheme has the same order as the scheme $Q_2/P_0$, but it is more economical that the scheme $Q_2/P_0$.
Hou-De Han. (1970). An Economical Finite Element Scheme for Navier-Stokes Equations.
Journal of Computational Mathematics. 5 (2).
135-143.
doi:
Copy to clipboard