- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Acceleration of the Convergence in Finite Difference Method by Predictor-Corrector and Splitting Extrapolation Methods
- BibTex
- RIS
- TXT
@Article{JCM-5-181,
author = {Pekka Neittaanmaki and Qun Lin},
title = {Acceleration of the Convergence in Finite Difference Method by Predictor-Corrector and Splitting Extrapolation Methods},
journal = {Journal of Computational Mathematics},
year = {1987},
volume = {5},
number = {2},
pages = {181--190},
abstract = { Two types of combination methods for accelerating the convergence of the finite difference method are presented. The first is based on an interpolation principle(correction method) and the second one on extrapolation principle. They improve the convergence form $O(h^2)$ to $O(h^4)$. the main advantage when compared with standard methods, is that the computational work can be splitted into independent parts, which can be carried out in parrallel. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9541.html}
}
TY - JOUR
T1 - Acceleration of the Convergence in Finite Difference Method by Predictor-Corrector and Splitting Extrapolation Methods
AU - Pekka Neittaanmaki & Qun Lin
JO - Journal of Computational Mathematics
VL - 2
SP - 181
EP - 190
PY - 1987
DA - 1987/05
SN - 5
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9541.html
KW -
AB - Two types of combination methods for accelerating the convergence of the finite difference method are presented. The first is based on an interpolation principle(correction method) and the second one on extrapolation principle. They improve the convergence form $O(h^2)$ to $O(h^4)$. the main advantage when compared with standard methods, is that the computational work can be splitted into independent parts, which can be carried out in parrallel.
Pekka Neittaanmaki & Qun Lin. (1970). Acceleration of the Convergence in Finite Difference Method by Predictor-Corrector and Splitting Extrapolation Methods.
Journal of Computational Mathematics. 5 (2).
181-190.
doi:
Copy to clipboard