- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
The Deferred Correction Procedure for Linear Multistep Formulas
- BibTex
- RIS
- TXT
@Article{JCM-3-41,
author = {Geng Sun},
title = {The Deferred Correction Procedure for Linear Multistep Formulas},
journal = {Journal of Computational Mathematics},
year = {1985},
volume = {3},
number = {1},
pages = {41--49},
abstract = { A general approach of deferred correction procedure based on linear multistep formulas is proposed .Several deferred correction procedures based on backward differentiation formulas, which allow us to develop L-stable algorithms of order up to 4 and $L(\alpha)$-stable algorithms of order up to 7, are derived.Preliminary numberical results indicate that this approach is indeed efficient. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9606.html}
}
TY - JOUR
T1 - The Deferred Correction Procedure for Linear Multistep Formulas
AU - Geng Sun
JO - Journal of Computational Mathematics
VL - 1
SP - 41
EP - 49
PY - 1985
DA - 1985/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9606.html
KW -
AB - A general approach of deferred correction procedure based on linear multistep formulas is proposed .Several deferred correction procedures based on backward differentiation formulas, which allow us to develop L-stable algorithms of order up to 4 and $L(\alpha)$-stable algorithms of order up to 7, are derived.Preliminary numberical results indicate that this approach is indeed efficient.
Geng Sun. (1970). The Deferred Correction Procedure for Linear Multistep Formulas.
Journal of Computational Mathematics. 3 (1).
41-49.
doi:
Copy to clipboard