- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
The Spectral Variation of Pencils of Matrices
- BibTex
- RIS
- TXT
@Article{JCM-3-262,
author = {L. Elsener and P. Lancaster},
title = {The Spectral Variation of Pencils of Matrices},
journal = {Journal of Computational Mathematics},
year = {1985},
volume = {3},
number = {3},
pages = {262--274},
abstract = { Perturbation theorems for the spectrum of a regular matrix pencil $\lambdaA-B$ are given.As it may include points near or at infinity the Euclidean distance is not appropriate. We use the chordal metric and the distances.For those purpose we develop here an algebraic treatment of matrix pairs, with special reference to diagonable and definite pairs, using ideas from the theory of matrix polynomials. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9623.html}
}
TY - JOUR
T1 - The Spectral Variation of Pencils of Matrices
AU - L. Elsener & P. Lancaster
JO - Journal of Computational Mathematics
VL - 3
SP - 262
EP - 274
PY - 1985
DA - 1985/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9623.html
KW -
AB - Perturbation theorems for the spectrum of a regular matrix pencil $\lambdaA-B$ are given.As it may include points near or at infinity the Euclidean distance is not appropriate. We use the chordal metric and the distances.For those purpose we develop here an algebraic treatment of matrix pairs, with special reference to diagonable and definite pairs, using ideas from the theory of matrix polynomials.
L. Elsener & P. Lancaster. (1970). The Spectral Variation of Pencils of Matrices.
Journal of Computational Mathematics. 3 (3).
262-274.
doi:
Copy to clipboard