- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Numerical Solution of the Reaction-Diffusion Equation
- BibTex
- RIS
- TXT
@Article{JCM-3-298,
author = {Ben-Yu Guo},
title = {Numerical Solution of the Reaction-Diffusion Equation},
journal = {Journal of Computational Mathematics},
year = {1985},
volume = {3},
number = {4},
pages = {298--314},
abstract = { In this paper, we consider the numberical solution for the reaction-diffusion equation. A finite difference scheme and the basic error equality are given. Then the error estimations are proved for the periodic problem with v(x,t)$\geq 0$, the first and second boundary value problems with $v(x,t)\geq v_00$, and for $v(U)\geq v_00$.Under some conditions such estimations imply the stabilities and convergences of the schemes. },
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9626.html}
}
TY - JOUR
T1 - Numerical Solution of the Reaction-Diffusion Equation
AU - Ben-Yu Guo
JO - Journal of Computational Mathematics
VL - 4
SP - 298
EP - 314
PY - 1985
DA - 1985/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9626.html
KW -
AB - In this paper, we consider the numberical solution for the reaction-diffusion equation. A finite difference scheme and the basic error equality are given. Then the error estimations are proved for the periodic problem with v(x,t)$\geq 0$, the first and second boundary value problems with $v(x,t)\geq v_00$, and for $v(U)\geq v_00$.Under some conditions such estimations imply the stabilities and convergences of the schemes.
Ben-Yu Guo. (1970). Numerical Solution of the Reaction-Diffusion Equation.
Journal of Computational Mathematics. 3 (4).
298-314.
doi:
Copy to clipboard