A Note on Burkholder Integrals
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JMS-49-42,
author = {Feng , Xiaogao and Huo , Shengjin},
title = {A Note on Burkholder Integrals},
journal = {Journal of Mathematical Study},
year = {2016},
volume = {49},
number = {1},
pages = {42--49},
abstract = {
In this note, for $k$-quasiconformal mappings of a bounded domain into the complex plane, we give an upper bound of Burkholder integral. Moreover, as an application we obtain an upper bound of the $L^p$-integral of $\sqrt{J_f}$ and $|Df|$ for certain $K$-quasiconformal mappings.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v49n1.16.05}, url = {http://global-sci.org/intro/article_detail/jms/987.html} }
TY - JOUR
T1 - A Note on Burkholder Integrals
AU - Feng , Xiaogao
AU - Huo , Shengjin
JO - Journal of Mathematical Study
VL - 1
SP - 42
EP - 49
PY - 2016
DA - 2016/03
SN - 49
DO - http://doi.org/10.4208/jms.v49n1.16.05
UR - https://global-sci.org/intro/article_detail/jms/987.html
KW - Quasiconformal mapping, Burkholder function, Morrey's problem.
AB -
In this note, for $k$-quasiconformal mappings of a bounded domain into the complex plane, we give an upper bound of Burkholder integral. Moreover, as an application we obtain an upper bound of the $L^p$-integral of $\sqrt{J_f}$ and $|Df|$ for certain $K$-quasiconformal mappings.
Xiaogao Feng & Shengjin Huo. (2019). A Note on Burkholder Integrals.
Journal of Mathematical Study. 49 (1).
42-49.
doi:10.4208/jms.v49n1.16.05
Copy to clipboard