J. Nonl. Mod. Anal., 1 (2019), pp. 93-105.
Published online: 2021-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we first establish the separable $Hamiltonian$ system of rectangular cantilever thin plate bending problems by choosing proper dual vectors. Then using the characteristics of off-diagonal infinite-dimensional $Hamiltonian$ operator matrix, we derive the biorthogonal relationships of the eigenfunction systems and based on it we further obtain the complete biorthogonal expansion theorem. Finally, applying this theorem we obtain the general solutions of rectangular cantilever thin plate bending problems with two opposite edges slidingly supported.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2019.93}, url = {http://global-sci.org/intro/article_detail/jnma/18870.html} }In this paper, we first establish the separable $Hamiltonian$ system of rectangular cantilever thin plate bending problems by choosing proper dual vectors. Then using the characteristics of off-diagonal infinite-dimensional $Hamiltonian$ operator matrix, we derive the biorthogonal relationships of the eigenfunction systems and based on it we further obtain the complete biorthogonal expansion theorem. Finally, applying this theorem we obtain the general solutions of rectangular cantilever thin plate bending problems with two opposite edges slidingly supported.