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Abstract

It is well-known that if we have an approximate eigenvalue A of a normal matrix A
of order n, a good approximation to the corresponding eigenvector u can be computed
by one inverse iteration provided the position, say kmax, of the largest component of w is
known. In this paper we give a detailed theoretical analysis to show relations between the
eigenvector v and vector zy, k = 1,---,n, obtained by simple inverse iteration, i.e., the
solution to the system (A — ;\I)m = ey with e; the kth column of the identity matrix I.
We prove that under some weak conditions, the index kmax is of some optimal properties
related to the smallest residual and smallest approximation error to u in spectral norm and
Frobenius norm. We also prove that the normalized absolute vector v = |u|/||u||loc of u
can be approximated by the normalized vector of (||z1||z,- - -, ||zx|l2)”. We also give some
upper bounds of |u(k)| for those “optimal” indexes such as Fernando’s heuristic for kmax
without any assumptions. A stable double orthogonal factorization method and a simpler
but may less stable approach are proposed for locating the largest component of w.
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1. Introduction

Let A be a normal matrix of order n. Assume that we have a good approximation A to an
eigenvalue A of A, the inverse iteration method

(A=ADy; =z,  zj+1 = yj/|lyjlleo

is commonly used for computing an eigenvector u of A corresponding A approximately. In
general, the starting vector zg = b is chosen at random or to be the vector of all one’s and the
iteration process converges in several steps [1]. However, there are no practical ways to choose a
starting vector b that ensures the rapid convergence, though it is true in theory that one can get
an accurate eigenvector to working precision by a single inverse iteration if the right vector b is
reasonably chosen [7]. In [12], Wilkinson pointed out that for symmetric traditional matrix A, a
solution to the homogenous system (A—;\I)a: = 0, discarding one of the n equations, say the kth
one, will be a good approximation to the eigenvector u provided the kth component u(k) of u is
not small. Equivalently, such an approximation, say zj, can be obtained by one step of inverse
iteration (A — AI)x = e, for a properly chosen index k, for example k = kmax corresponding
to the largest component u(kmax) of v in absolute value. Actually if u(k) is the largest one in
absolute value or above average in magnitude, the normalized output z, /||z|| of a single inverse
iteration will yield a residual which archives the optimal accuracy in magnitude. (See Corollary
4.1 for details.) It means that the simple inverse iteration, a single inverse iteration with right
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vector b = ey, will give an acceptable approximate eigenvector if the index k is chosen well.
Therefore there are two related problems that need to be considered: 1) how to locate the largest
component u(kmax) of the eigenvector v and, 2) if an index k is approximately estimated to
kmax, how large the component u(k) is or how close it is to u(kmax) in absolute value. In [3], an
index corresponding to the largest diagonal entry of the inverse of matrix A — M was suggested
as an heuristic for choosing the ”optimal” index kmax. (The index determined by the heuristic
will be denoted as kg in this paper.) Parlett and Dhillon [9] shown that k4 is asymptotically
equal to kpax as A tends to the eigenvalue A. In this paper, we will furthermore discuss such
problems for a real symmetric or more generally, normal matrix A by a detailed componentwise
analysis of the output x = x. As shown later, under some weak conditions the index kmax
is of some optimal properties such that among all normalized vectors zj, z}  achieves the
minimum of residuals both in 2-norm and in co-norm. In general, for indexes with some optimal
properties, for example k = kg4, the corresponding component u(k) is the largest one of u with
a factor tightly close to one. For those indexes k corresponding to small components |u(k)|,
the normalized vector 7, may be not a good approximation to u, but the position of its largest
component in absolute value also implies the position of large component of u, provided |u(k)|
is not small enough. On the other hand, the normalized absolute-valued vector |u|/||u]|s can
also be approximated by the normalized vector of the norm vector (||z||,- -, ||z.|)7.

Fernando’s approach for determining the index kg4 is an application of double factorization (a
combination of LDU and UDL factorizations) of the nearly singular tridiagonal matrix A — A
(Cf. 9] for careful discussions of the relation between the double triangular factorization and the
related eigenvector algorithms.) However double factorization is unstable and the slight danger
of overflow and/or underflow still exits. We will propose an orthogonal double factorization
based upon QR and QL decompositions to determine ky stably.

This paper is organized as follows: In Section 2, we first review some error bounds of the

residual ||Az — Az||; and the error ||z — u||y of the approximate eigenvector 2 computed by a
single inverse iteration with respect to the right vector b. As a deduction, error bounds for
x), obtained by simple inverse iteration are also given. In Section 3 we discuss some optimal
properties of x,_ . that implies information of locating the largest component of u. A lower
bound in terms of u(kmax) for the component u(ky) will be given in Section 4, which shows
that u(kq) is always the largest component of v with a factor tightly close to one. We also
shown a simpler way to locating largest component of u. The double orthogonal factorization
for determining k4 is proposed in Section 5.
Notations. We define by {);} the set of eigenvalues of matrix A and by {u;} the corresponding
eigenvectors with |[uj]l = 1. The eigenvalue \; satisfying |A; — A = min; |Aj — Al will be
simply denoted as A. Generally, we always assume that A is uniquely determined, i.e., if
Aj # A, then |A; — A] > |A — Al. Vi denotes the eigenspace spanned by the eigenvectors
u; corresponding to A; = A. (The eigenvalue A may be multiple.) Specially, if A is a single
eigenvalue, V) = spann{u}, where u = w;. It is also assumed that )\ is not an exact eigenvalue
of A. z means the conjugate transpose of z and, as we have used, (k) is the k-th component
of vector z.

2. A Review on Inverse Iteration

We focus on a single inverse iteration, i.e., an inverse iteration is viewed as a “direct”
method for computing approximately eigenvectors rather than an iteration approach. The
nature problem is thus that how good the approximation gotten by one iteration

(A—X)z=b (2.1)

is for a certain right vector b chosen in practical. To that end, let us first review a well-known



