COMBINATIVE PRECONDITIONERS OF MODIFIED INCOMPLETE CHOLESKY FACTORIZATION AND SHERMAN-MORRISON-WOODBURY UPDATE FOR SELF-ADJOINT ELLIPTIC DIRICHLET-PERIODIC BOUNDARY VALUE PROBLEMS *1)

Zhong-zhi Bai Gui-qing Li
(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)
Lin-zhang Lu
(Department of Mathematics, Xiamen University, Xiamen 361005, China)

Abstract

For the system of linear equations arising from discretization of the second-order selfadjoint elliptic Dirichlet-periodic boundary value problems, by making use of the special structure of the coefficient matrix we present a class of combinative preconditioners which are technical combinations of modified incomplete Cholesky factorizations and Sherman-Morrison-Woodbury update. Theoretical analyses show that the condition numbers of the preconditioned matrices can be reduced to $\mathcal{O}\left(h^{-1}\right)$, one order smaller than the condition number $\mathcal{O}\left(h^{-2}\right)$ of the original matrix. Numerical implementations show that the resulting preconditioned conjugate gradient methods are feasible, robust and efficient for solving this class of linear systems.

Mathematics subject classification: 65F10, 65F50.
Key words: System of linear equations, Conjugate gradient method, Incomplete Cholesky factorization, Sherman-Morrison-Woodbury formula, Conditioning.

1. Introduction

Consider the two-dimensional second-order self-adjoint elliptic partial differential equation

$$
\begin{equation*}
-\nabla \cdot(a(\xi, \eta) \cdot \nabla u)+\theta(\xi, \eta) \cdot u=f(\xi, \eta) \tag{1.1}
\end{equation*}
$$

in the unit square $\Omega=(0,1) \times(0,1)$ with the boundary conditions

$$
\left\{\begin{array}{lll}
u(0, \eta)=g_{0}^{(1)}(\eta), & u(1, \eta)=g_{1}^{(1)}(\eta) \\
u(\xi, 0)=g_{0}^{(2)}(\xi), & u(\xi, 1)=g_{1}^{(2)}(\xi)
\end{array}\right.
$$

where $a(\xi, \eta)$ is a positive and piecewise differentiable function, $\theta(\xi, \eta)$ is a nonnegative bounded function, and $g_{0}^{(1)}(\eta), g_{1}^{(1)}(\eta), g_{0}^{(2)}(\xi), g_{1}^{(2)}(\xi)$ and $f(\xi, \eta)$ are bounded functions. The case that $a(\xi, \eta)=1, \theta(\xi, \eta)=0$ and $g_{0}^{(1)}(\eta)=g_{1}^{(1)}(\eta)=g_{0}^{(2)}(\xi)=g_{1}^{(2)}(\xi)=0$ has been extensively studied in literatures, e.g., $[1,12,15,16]$. In this paper, we will study the case that

$$
\begin{equation*}
g_{0}^{(1)}(\eta)=g_{1}^{(1)}(\eta) \equiv g^{(1)}(\eta) \tag{1.2}
\end{equation*}
$$

i.e., the boundary conditions are periodic on the ξ-direction and Dirichlet on the η-direction, respectively. Moreover, for simplicity but without loss of generality, we assume that $\theta(\xi, \eta)=0$ and $g_{0}^{(2)}(\xi)=g_{1}^{(2)}(\xi) \equiv 0$ in the sequel.

[^0]When the second-order self-adjoint elliptic Dirichlet-periodic boundary value problem (1.1)(1.2) is discretized by the five-point central difference scheme with mesh size $h=\frac{1}{N+1}$, associated with the interior mesh point $(i h, j h)$ we have the difference equation

$$
s_{i, j} u_{i, j}-a_{i-\frac{1}{2}, j} u_{i-1, j}-a_{i+\frac{1}{2}, j} u_{i+1, j}-a_{i, j-\frac{1}{2}} u_{i, j-1}-a_{i, j+\frac{1}{2}} u_{i, j+1}=h^{2} f_{i, j}
$$

where

$$
s_{i, j}=a_{i-\frac{1}{2}, j}+a_{i+\frac{1}{2}, j}+a_{i, j-\frac{1}{2}}+a_{i, j+\frac{1}{2}},
$$

and for $j=1,2, \ldots, N$, we stipulate that $a_{(N+i)+\frac{1}{2}, j}=a_{i-\frac{1}{2}, j}$ in the light of the periodicity of the boundary condition (1.2). By arranging the unknowns $\left\{u_{i, j}\right\}_{1 \leq i \leq N+1,1 \leq j \leq N}$ according to the natural ordering and letting $n=(N+1) N$, we obtain the system of linear equations:

$$
\begin{equation*}
\mathbf{A} x=\mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{n \times n} \text { symmetric positive definite, and } \mathbf{b} \in \mathbb{R}^{n} \tag{1.3}
\end{equation*}
$$

where

$$
\mathbf{A}=\left(\begin{array}{lllll}
\mathbf{A}_{1} & B_{1} & & & \tag{1.4}\\
B_{1} & \mathbf{A}_{2} & B_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & B_{N-2} & \mathbf{A}_{N-1} & B_{N-1} \\
& & & B_{N-1} & \mathbf{A}_{N}
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
h^{2} f_{1,1} \\
h^{2} f_{1,2} \\
\vdots \\
h^{2} f_{N+1, N-1} \\
h^{2} f_{N+1, N}
\end{array}\right)
$$

and for $i=1,2, \ldots, N$ and $j=1,2, \ldots, N-1$,

$$
\mathbf{A}_{i}=\left(\begin{array}{ccccc}
a_{1}^{(i)} & d_{1}^{(i)} & & & \sigma^{(i)} \tag{1.5}\\
d_{1}^{(i)} & a_{2}^{(i)} & d_{2}^{(i)} & & \\
& \ddots & \ddots & \ddots & \\
& & d_{N-1}^{(i)} & a_{N}^{(i)} & d_{N}^{(i)} \\
\sigma^{(i)} & & & d_{N}^{(i)} & a_{N+1}^{(i)}
\end{array}\right), \quad B_{j}=\left(\begin{array}{ccccc}
b_{1}^{(j)} & & & & \\
& b_{2}^{(j)} & & & \\
& & \ddots & & \\
& & & b_{N}^{(j)} & \\
& & & & b_{N+1}^{(j)}
\end{array}\right)
$$

The sub-matrices $\mathbf{A}_{i} \in \mathbb{R}^{(N+1) \times(N+1)}(i=1,2, \ldots, N)$ are symmetric positive definite whose elements are defined by

$$
a_{j}^{(i)}=s_{j, i}, \quad d_{j}^{(i)}=-a_{j+\frac{1}{2}, i}, \quad \sigma^{(i)}=-a_{i-\frac{1}{2}, i}
$$

and the sub-matrices $B_{i} \in \mathbb{R}^{(N+1) \times(N+1)}(i=1,2, \ldots, N-1)$ are diagonal whose elements are defined by

$$
b_{j}^{(i)}=-a_{j, i+\frac{1}{2}} .
$$

Clearly, $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an irreducibly diagonally dominant Z-matrix. Therefore, it is an M matrix. And so are the sub-matrices $\mathbf{A}_{i}(i=1,2, \ldots, N)$. We refer the readers to [17, 18] for details.

The preconditioned conjugate gradient (PCG) method $[11,7,10]$ is one of the most powerful methods for getting an accurate approximation to the solution $x^{*} \in \mathbb{R}^{n}$ of the system of linear equations (1.3). As a matter of fact, if a symmetric positive definite matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ is employed as a preconditioner to the coefficient matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, then the corresponding PCG iteration converges to x^{*} within a relative error ε in at most $\frac{1}{2} \sqrt{\kappa\left(\mathbf{M}^{-1} \mathbf{A}\right)} \ln \frac{2}{\varepsilon}+1$ number of iteration steps[2], where $\kappa\left(\mathbf{M}^{-1} \mathbf{A}\right)$ represents the Euclidean condition number of the preconditioned matrix $\mathbf{M}^{-1} \mathbf{A}$. See also $[9,10,4,6]$. Therefore, a good preconditioner is the key factor to considerably improve the convergence behaviour of the PCG iteration.

As we know, standard preconditioners to a symmetric positive definite matrix may be constructed by the incomplete Cholesky (IC) factorization [2, 10] and the symmetric successive overrelaxation (SSOR) iteration $[17,18,1]$ techniques. See also $[3,5,8,15,16]$. However, these two classes of preconditioners are only applicable and efficient for a special class of symmetric

[^0]: * Received November 1, 2002; final revised April 20, 2004.

 1) Subsidized by The Special Funds For Major State Basic Research Projects (No. G1999032803) and the National Natural Science Foundation (No. 10471146).
