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Abstract

For the system of linear equations arising from discretization of the second-order self-
adjoint elliptic Dirichlet-periodic boundary value problems, by making use of the special
structure of the coefficient matrix we present a class of combinative preconditioners which
are technical combinations of modified incomplete Cholesky factorizations and Sherman-
Morrison-Woodbury update. Theoretical analyses show that the condition numbers of the
preconditioned matrices can be reduced to O(h−1), one order smaller than the condition
number O(h−2) of the original matrix. Numerical implementations show that the resulting
preconditioned conjugate gradient methods are feasible, robust and efficient for solving this
class of linear systems.
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1. Introduction

Consider the two-dimensional second-order self-adjoint elliptic partial differential equation
−∇ · (a(ξ, η) · ∇u) + θ(ξ, η) · u = f(ξ, η) (1.1)

in the unit square Ω = (0, 1) × (0, 1) with the boundary conditions{
u(0, η) = g

(1)
0 (η), u(1, η) = g

(1)
1 (η),

u(ξ, 0) = g
(2)
0 (ξ), u(ξ, 1) = g

(2)
1 (ξ),

where a(ξ, η) is a positive and piecewise differentiable function, θ(ξ, η) is a nonnegative bounded
function, and g(1)

0 (η), g(1)
1 (η), g(2)

0 (ξ), g(2)
1 (ξ) and f(ξ, η) are bounded functions. The case that

a(ξ, η) = 1, θ(ξ, η) = 0 and g
(1)
0 (η) = g

(1)
1 (η) = g

(2)
0 (ξ) = g

(2)
1 (ξ) = 0 has been extensively

studied in literatures, e.g., [1, 12, 15, 16]. In this paper, we will study the case that

g
(1)
0 (η) = g

(1)
1 (η) ≡ g(1)(η), (1.2)

i.e., the boundary conditions are periodic on the ξ-direction and Dirichlet on the η-direction,
respectively. Moreover, for simplicity but without loss of generality, we assume that θ(ξ, η) = 0
and g(2)

0 (ξ) = g
(2)
1 (ξ) ≡ 0 in the sequel.
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When the second-order self-adjoint elliptic Dirichlet-periodic boundary value problem (1.1)-
(1.2) is discretized by the five-point central difference scheme with mesh size h = 1

N+1 , associ-
ated with the interior mesh point (ih, jh) we have the difference equation

si,jui,j − ai− 1
2 ,j
ui−1,j − ai+ 1

2 ,j
ui+1,j − ai,j− 1

2
ui,j−1 − ai,j+ 1

2
ui,j+1 = h2fi,j ,

where
si,j = ai− 1

2 ,j
+ ai+ 1

2 ,j
+ ai,j− 1

2
+ ai,j+ 1

2
,

and for j = 1, 2, . . . , N , we stipulate that a(N+i)+ 1
2 ,j

= ai− 1
2 ,j

in the light of the periodicity of
the boundary condition (1.2). By arranging the unknowns {ui,j}1≤i≤N+1,1≤j≤N according to
the natural ordering and letting n = (N + 1)N , we obtain the system of linear equations:

Ax = b, A ∈ R
n×n symmetric positive definite, and b ∈ R

n, (1.3)

where

A =

⎛⎜⎜⎜⎜⎜⎝
A1 B1

B1 A2 B2

. . . . . . . . .
BN−2 AN−1 BN−1

BN−1 AN

⎞⎟⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎜⎝
h2f1,1
h2f1,2

...
h2fN+1,N−1

h2fN+1,N

⎞⎟⎟⎟⎟⎟⎠ , (1.4)

and for i = 1, 2, . . . , N and j = 1, 2, . . . , N − 1,

Ai =

⎛⎜⎜⎜⎜⎜⎜⎝
a
(i)
1 d

(i)
1 σ(i)

d
(i)
1 a

(i)
2 d

(i)
2

. . . . . . . . .
d
(i)
N−1 a

(i)
N d

(i)
N

σ(i) d
(i)
N a

(i)
N+1

⎞⎟⎟⎟⎟⎟⎟⎠ , Bj =

⎛⎜⎜⎜⎜⎜⎜⎝
b
(j)
1

b
(j)
2

. . .
b
(j)
N

b
(j)
N+1

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.5)

The sub-matrices Ai ∈ R
(N+1)×(N+1)(i = 1, 2, . . . , N) are symmetric positive definite whose

elements are defined by

a
(i)
j = sj,i, d

(i)
j = −aj+ 1

2 ,i
, σ(i) = −ai− 1

2 ,i
;

and the sub-matrices Bi ∈ R
(N+1)×(N+1)(i = 1, 2, . . . , N − 1) are diagonal whose elements are

defined by
b
(i)
j = −aj,i+ 1

2
.

Clearly, A ∈ R
n×n is an irreducibly diagonally dominant Z-matrix. Therefore, it is an M -

matrix. And so are the sub-matrices Ai (i = 1, 2, . . . , N). We refer the readers to [17, 18] for
details.

The preconditioned conjugate gradient (PCG) method[11, 7, 10] is one of the most powerful
methods for getting an accurate approximation to the solution x∗ ∈ R

n of the system of linear
equations (1.3). As a matter of fact, if a symmetric positive definite matrix M ∈ R

n×n is
employed as a preconditioner to the coefficient matrix A ∈ R

n×n, then the corresponding PCG
iteration converges to x∗ within a relative error ε in at most 1

2

√
κ(M−1A) ln 2

ε + 1 number of
iteration steps[2], where κ(M−1A) represents the Euclidean condition number of the precondi-
tioned matrix M−1A. See also [9, 10, 4, 6]. Therefore, a good preconditioner is the key factor
to considerably improve the convergence behaviour of the PCG iteration.

As we know, standard preconditioners to a symmetric positive definite matrix may be con-
structed by the incomplete Cholesky (IC) factorization[2, 10] and the symmetric successive
overrelaxation (SSOR) iteration[17, 18, 1] techniques. See also [3, 5, 8, 15, 16]. However, these
two classes of preconditioners are only applicable and efficient for a special class of symmetric


