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Abstract

The necessary and sufficient conditions for the existence of and the expressions for the
bisymmetric solutions of the matrix equations (I) A1X1B1 +A2X2B2 + · · ·+AkXkBk = D,
(II) A1XB1 + A2XB2 + · · · + AkXBk = D and (III) (A1XB1, A2XB2, · · · , AkXBk) =
(D1, D2, · · · , Dk) are derived by using Kronecker product and Moore-Penrose generalized
inverse of matrices. In addition, in corresponding solution set of the matrix equations, the
explicit expression of the nearest matrix to a given matrix in the Frobenius norm is given.
Numerical methods and numerical experiments of finding the nearest solutions are also
provided.

Mathematics subject classification: 5A24, 65F30, 65F05.
Key words: Bisymmetric matrix, Matrix equation, Matrix nearness problem, Kronecker
product, Frobenius norm, Moore-Penrose generalized inverse.

1. Introduction

Denote by Rn the set of all real n-component vectors, Rm×n the set of all m × n real
matrices and BSRn×n the set of all n × n real bisymmetric matrices (A symmetric matrix
A = (aij) ∈ Rn×n is called bisymmetric if aij = an+1−j,n+1−i for all 1 ≤ i, j ≤ n). In

represents the n× n identity matrix. ‖A‖F , A+ and AT stand for the Frobenius norm, Moore-
Penrose generalized inverse and transpose of a matrix A, respectively. On Rm×n we define
inner product: 〈A, B〉 = trace(BT A) for all A, B ∈ Rm×n, then Rm×n is a Hilbert inner
product space and the norm of a matrix generated by this inner product is Frobenius norm.
For A = (aij) ∈ Rm×n, B = (bij) ∈ Rp×q, let A

⊗
B ∈ Rmp×nq be the Kronecker product of A

and B.
Various aspects for the solution of linear matrix equations have been investigated. For

example, Baksalary and Kala [1], Chu [4], He [8], and Xu, Wei and Zheng [13] considered the
nonsymmetric solution of the matrix equation AXB + CXD = E by using Moore-Penrose
generalized inverse and the generalized singular value decomposition of matrices, while Chang
and Wang [3], Jameson [9] and Dai [6] considered the symmetric conditions on the solution of
the matrix equations: AXAT +BY BT = C, AX +Y A = C, AX = Y B and AXB = C. Zietak
[14, 15] discussed the lp-solution and chebyshev-solution of the matrix equation AX +Y B = C.
Dobovisek [7] discussed the minimal solution of the matric equation AX − Y B = 0. Chu
[5], and Kucera [11] and Jameson [10] are, respectively, studied the nonsymmetric solution of
the matrix equation AXB + CXD = E and its special case AX + XB = C. Mitra [12],
Chu [4] and the references therein studied the nonsymmetric solution of the matrix equation
(AXB, CXD) = (E, F ).

In this paper, the following problems are considered
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Problem I. Given X∗
i ∈ Rni×ni , Ai ∈ Rp×ni , Bi ∈ Rni×q (i = 1, 2, · · · , k) and D ∈ Rp×q. Let

H1 = {[X1, X2, · · · , Xk] : A1X1B1 + A2X2B2 + · · · + AkXkBk = D, Xi ∈ BSRni×ni}, (1.1)

find [X̂1, X̂2, · · · , X̂k] ∈ H1 such that

‖[X̂1, · · · , X̂k] − [X∗
1 , · · · , X∗

k ]‖F ≡ (‖X̂1 − X∗
1‖2

F + ‖X̂2 − X∗
2‖2

F + · · · + ‖X̂k − X∗
k‖2

F )
1
2

= min[X1,··· ,Xk]∈H1 ‖[X1, · · · , Xk] − [X∗
1 , · · · , X∗

k ]‖F . (1.2)

Problem II. Given X∗ ∈ Rn×n, Ai ∈ Rp×n, Bi ∈ Rn×q (i = 1, 2, · · · , k) and D ∈ Rp×q. Let

H2 = {X ∈ BSRn×n : A1XB1 + A2XB2 + · · · + AkXBk = D}, (1.3)

find X̂ ∈ H2 such that
‖X̂ − X∗‖F = min

X∈H2
‖X − X∗‖F . (1.4)

Problem III. Given X∗ ∈ Rn×n, Ai ∈ Rpi×n, Bi ∈ Rn×qi and Di ∈ Rpi×qi (i = 1, 2, · · · , k).
Let

H3 = {X ∈ BSRn×n : A1XB1 = D1, A2XB2 = D2, · · · , AkXBk = Dk}, (1.5)

find X̂ ∈ H3 such that
‖X̂ − X∗‖F = min

X∈H3
‖X − X∗‖F . (1.6)

Using Kronecker product and Moore-Penrose generalized inverse of matrices, the necessary
and sufficient conditions for the existence of and the explicit expressions for the solution of
Problem I, II and III are derived. Numerical methods and numerical experiments of finding the
nearest solutions are also provided.

2. Solving Problems I, II and III

For matrix A ∈ Rm×n, denotes by vec(A) the following vector containing all the entries of
matrix A:

vec(A) = [A(1, :), A(2, :), · · · , A(n, :)]T ∈ Rmn, (2.1)

where A(i, :) denote ith row of matrix A. For vector x ∈ Rn2
, denote by vec−1

n (x) the following
matrix containing all the entries of vector x:

vec−1
n (x) =

⎛
⎜⎜⎜⎝

x(1 : n)T

x(n + 1 : 2n)T

...
x[(n − 1)n + 1 : n2]T

⎞
⎟⎟⎟⎠ ∈ Rn×n, (2.2)

where x(i : j) denotes elements i to j of vector x.
Let

vec(BSRn×n) = {vec(A) : A ∈ BSRn×n} ⊂ Rn2
, (2.3)

then the dimension of the subspace vec(BSRn×n) is r = (n+1)2/4 when n is add or r = n(n+
2)/4 when n is even. Suppose w1, w2, · · · , wr is an orthonormal basis-set for vec(BSRn×n). For
example, suitable wi for n = 3 might be w1 = [ 1√

2
, 0, 0, 0, 0, 0, 0, 0, 1√

2
]T , w2 = [0, 1

2 , 0, 1
2 , 0, 1

2 , 0,
1
2 , 0]T , w3 = [0, 0, 1√

2
, 0, 0, 0, 1√

2
, 0, 0]T , W4 = [0, 0, 0, 0, 1, 0, 0, 0, 0]T . Consequently

W = [w1, w2, · · · , wr] ∈ Rn2×r (2.4)


