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Abstract

In the present paper, we investigate properties of lumped mass finite element method
(LFEM hereinafter) eigenvalues of elliptic problems. We propose an equivalent formulation
of LFEM and prove that LFEM eigenvalues are smaller than the standard finite element
method (SFEM hereinafter) eigenvalues. It is shown, for model eigenvalue problems with
uniform meshes, that LFEM eigenvalues are not greater than exact solutions and that
they are increasing functions of the number of elements of the triangulation, and numerical
examples show that this result equally holds for general problems.
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1. Introduction

The finite element method has been widely and successfully applied to both boundary value
and eigenvalue problems for a solid continuum. In the boundary value problem, it has been
shown that if the interpolation functions satisfy certain criteria [7],the finite element solution
will converge to the exact solution as the size of the element is diminished. The convergence
likewise occurs for the eigenvalue problems (Ref. [7, 3, 5, 8, 1, 2] and references therein).

There exist two finite element methods for solving eigenvalue problems, one is SFEM
(Ref.[1, 2]), the other is LFEM. LFEM has been extensively applied to science and engineering
computations because of its simplicity. LFEM in particular can largely simplify the computa-
tion of generalized eigenvalue problems (Ref.[3, 5]). The convergence of LFEM for eigenvalue
problems was established by Tong.et al [8] and Strang and Fix [7]. Strang and Fix in [7] gave
an error expansion of LFEM eigenvalue for one dimensional Neumann problem, the error ex-
pansion of LFEM eigenvalue for one dimensional Dirichlet problem was presented in [1], where
some comments on the asymptotic lower bound when h tends to zero for the problem therein
were also given. Tong.et al in [8] proved that LFEM didn’t lose the accuracy of approximation
compared with SFEM as long as proper lumped mass method was chosen. The concept of lower
approximations of eigenvalues was first introduced in [6]. Numerical experiments therein indi-
cated that LFEM eigenvalues are lower approximations to the exact ones, however the analysis
therein is not rigorous.

In the present paper, we investigate properties of LFEM eigenvalues. It is well known that
SFEM eigenvalues approximate exact solutions from above [1, 2] and that they are in some
sense decreasing functions of the number of elements of the partition of the domain considered,
on the contrary, what we are interested in is to show that LFEM eigenvalues approximate
exact solutions from below and that they are increasing functions of the number of elements.
For model eigenvalue problems with uniform meshes, we provide a rigorous analysis for these
properties. For general problems, we propose an equivalent form for LFEM and show that
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LFEM eigenvalues are smaller than SFEM eigenvalues, and the final numerical experiments
demonstrate that LFEM eigenvalues are exactly increasing functions of the number of elements,
then we can safely assert LFEM eigenvalues are not greater than exact ones. The paper is
organized as following. In section 2, we recall the weak formulation of the elliptic eigenvalue
problem. LFEM and its equivalent formulation will be described in section 3, and in section 4
we shall show that LFEM eigenvalues are not greater than SFEM eigenvalues, as applications,
we shall also prove, for model problems with uniform meshes, that LFEM eigenvalues are lower
approximations in the same section. Numerical results are illustrated in section 5. This paper
ends with section 6, which brings our final remark.

2. Variational Formulation of Eigenvalue Problem

We shall consider the eigenvalue problem in the divergence form which is read as

{
Lu = − ∂

∂xj
(aij

∂
∂xi

u) + c(x)u = λρu on Ω
u = 0 on ∂Ω

(2.1)

where Ω ⊂ Rd is a bounded open domain with smooth enough boundary ∂Ω, aij(x) have local
integrable derivatives, c(x) ∈ L∞(Ω) and c(x) ≥ 0. We assume L is a strict elliptic operator.

For the eigenvalue problem Lu = λρu, there are two variational formulation forms: Rayleigh
quotient and weak form, which are expressed as, respectively

R(v) =
a(v, v)
(ρv, v)

a(u, v) = λ(ρu, v) ∀v ∈ H1
0

where

a(u, v) =
∫

Ω

[aij
∂u

∂xi

∂v

∂xj
+ c(x)uv]dx and (ρu, v) =

∫
Ω

ρuvdx

G.Strang and G.J.Fix in [7] show that the two forms are equivalent, in particular, one has

Lemma 2.1 (min-max principle). Let λl be l-th eigenvalue of problem (2.1), it holds that

λl = min
sl

max
v∈sl

R(v) (2.2)

where sl is any l-dimension subspace of H1
0 (Ω).

Let A and B be n × n real symmetric and positive definite matrixes, discrete counterpart of
Rayleigh quotient with respect to A and B can be stated as

R(x) =
xT Ax

xT Bx
(x ∈ Rn, x �= 0)

where xT denotes the transpose of n-dimensional vector x, then one has

Lemma 2.2. Let λk be k-th generalized eigenvalue of A with respect to B, then

λk = min
Vk

max
x∈Vk,x �=0

R(x) (2.3)

where Vk is any k-dimension subspace of Rn.


