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Abstract. For 2D elastic-plastic flows with the hypo-elastic constitutive model and von
Mises’ yielding condition, the non-conservative character of the hypo-elastic constitu-
tive model and the von Mises’ yielding condition make the construction of the solu-
tion to the Riemann problem a challenging task. In this paper, we first analyze the
wave structure of the Riemann problem and develop accordingly a Four-Rarefaction
wave approximate Riemann Solver with Elastic waves (FRRSE). In the construction
of FRRSE one needs to use an iterative method. A direct iteration procedure for four
variables is complex and computationally expensive. In order to simplify the solution
procedure we develop an iteration based on two nested iterations upon two variables,
and our iteration method is simple in implementation and efficient. Based on FRRSE as
a building block, we propose a 2nd-order cell-centered Lagrangian numerical scheme.
Numerical results with smooth solutions show that the scheme is of second-order accu-
racy. Moreover, a number of numerical experiments with shock and rarefaction waves
demonstrate the scheme is essentially non-oscillatory and appears to be convergent.
For shock waves the present scheme has comparable accuracy to that of the scheme
developed by Maire et al., while it is more accurate in resolving rarefaction waves.
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1 Introduction

This paper aims at the construction of a high-order cell-centered Lagrangian scheme for
elastic-plastic flows in two-spatial dimensions with the isotropic elastic-plastic model,
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initially developed by Wilkins [1]. The scheme is constructed based on an approximate
Riemann solver for the equations of the elastic-plastic solids. In Wilkins’ model, a per-
fectly elastic material is characterized by Hooke’s law in terms of an incremental strain
resulting in an incremental stress and Von Mises’ yielding condition is used to describe
the elastic limit. The earliest simulation for elastic-plastic hydrodynamic equations with
Wilkins’ model was developed by Wilkins in 1962 [1], in which the equations of mo-
mentum and specific internal energy are discretized on a staggered grid and artificial
viscosity is employed to simulate moving shocks in order to damp spurious numerical
oscillations. Besides the staggered Lagrangian approach, Eulerian and cell-centered La-
grangian schemes have also been used in the simulation of elastic-plastic flows.

Eulerian methods [8]- [12] are suitable for problems involving discontinuous waves
and large deformations. However, most of them are for problems with the hyper-
elastic model for isotropic materials. Compared with staggered Lagrangian schemes,
cell-centered Lagrangian schemes have their own advantages. For the cell-centered La-
grangian scheme it is not necessary to use artificial viscosity and the scheme is conserva-
tive because the equation for total energy conservation, not the specific internal energy,
is discretised. In recent years, the cell-centered Lagrangian scheme has attracted much
attention [2]- [5], where cell-centered Lagrangian schemes are not only constructed for
the hyper-elastic models, but also for hypo-elastic models. In these papers, a nodal Rie-
mann solver is deduced from conservation of the total energy, but the structure of the
Riemann solution is not fully exploited. Some authors, such as in [6] and [7], have uti-
lized the structure of the solution of the Riemann problem to construct Riemann solvers
for the governing equations with hypo-elastic models. Gavrilyuk et al. [7] analyzed the
structure of the solution to the Riemann problem and developed a Riemann solver for
the hyperbolic nonconservative model with a system of linear elasticity for transverse
waves. Besides, the elastic energy is included in the total energy and an extra evolu-
tion equation is added in order to make the elastic transform reversible in the absence
of shock waves. Després [6] constructed a shock solution to the non-conservative equa-
tions with the hypo-elasticity model and found that a sonic point was necessary to give
a compression solution that begins at a constrained compressed state.

In this paper, we first analyze the structure of the solution of the Riemann problem for
the governing equations with hypo-elastic models in the normal direction to a generic cell
edge in two-spatial dimensions, then construct a four-rarefaction approximate Riemann
solver with elastic waves (FRRSE) for the non-conservative equations of Wilkins’ model
with von Mises’ yielding condition. Moreover, we use our FRRSE to define a numerical
flux to construct a high-order cell-centered Lagrangian scheme.

The paper is organized as follows. We describe the governing equations in two-spatial
dimensions in Section 2, our FRRSE is introduced in Section 3 and an associated high or-
der cell-centered Lagrangian scheme for non-conservative elastic-plastic flows is devel-
oped in Section 4. A number of numerical examples are presented in Section 5 to validate
our scheme, and conclusions follow in Section 6.


