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Abstract. This paper is concerned with a piecewise smooth rational quasi-interpolation

with algebraic accuracy of degree (n + 1) to approximate the scattered data in R
3.

We firstly use the modified Taylor expansion to expand the mean value coordinates

interpolation with algebraic accuracy of degree one to one with algebraic accuracy of

degree (n + 1). Then, based on the triangulation of the scattered nodes in R
2, on

each triangle a rational quasi-interpolation function is constructed. The constructed

rational quasi-interpolation is a linear combination of three different expanded mean

value coordinates interpolations and it has algebraic accuracy of degree (n + 1). By

comparing accuracy, stability, and efficiency with the C1-Tri-interpolation method of

Goodman[16] and the MQ Shepard method, it is observed that our method has some

computational advantages.
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1. Introduction

The problem of scattered data approximation appears in many fields of science and

engineering. For example, geology, geography, reverse engineering, numerical simulation,

computer graphics and geometric modeling, etc.. The most commonly used approximation

method is the radial basis function interpolation [1-3], which is a kind of global interpo-

lation method and need to solve linear system of equations to determine the coefficients

of interpolation basis functions. The system is usually ill-conditioned when scattered data

on a large scale, so they can’t be solved effectively and stably. One of the ways to solve

this problem is to find a better basis function, for example, the basis function in [4]. One

way to get around this problem is the quasi-interpolation method. The quasi-interpolation
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method gives an explicit expression of the approximation function using the given data.

Thus it avoids solving large-scale systems of linear algebraic equations in the radial basis

function interpolation.

For a set of function values { f (v j)}1≤ j≤N taken on a set of nodes Ξ = {v j}1≤ j≤N ⊂R
d ,

the form of quasi-interpolation function Φ( f ;v) corresponding to f (v) is

Φ( f ;v) =

N∑

j=1

f (v j)ϕ j(v),

where {ϕ j}1≤ j≤N is a set of quasi-interpolation basis functions. The set of nodes {v j}1≤ j≤N

usually has two kinds: the uniform grid node set and the scattered node set. The standard

quasi-interpolant based on the uniform grid node set in Z
d is

∑

j∈Zd

f ( jh)ϕ j,h(v), (1.1)

in which Schoenberg model [5]

∑
f ( jh)Φ(

v

h
− j)∼ f (v), v ∈Rd (1.2)

has attracted the most attention. Quasi-interpolant (1.2) can be studied via the theory of

principal shift-invariant spaces, which has been developed in several articles by de Boor et

al. [6,7]. Strang and Fix [8] also give a necessary and sufficient condition for the con-

vergence of such a standard form of quasi-interpolant. The quasi-interpolants based on

the uniform grid node set, have been applying in the numerical integration, the numerical

solution of integral equation and the differential equation [9,10]. The quasi-interpolant

(1.1) is based on the values of f (v) in the uniform grid node set, which limits its range

of application. For example, the above mentioned large-scale scattered data approxima-

tion, the numerical solution of integral equation and differential equation which are based

on the non-uniform grid subdivision, and other solving problems. These problems can be

solved, relying on the quasi-interpolants based on the scattered node set. The construc-

tion of the quasi-interpolants based on the high dimensional scattered node set, is firstly

studied by Dyn and Ron [11]. They proposed the general idea about extending the quasi-

interpolant based on the uniform grid node set to the scattered node set. Buhmann et al.

[12] extended the scheme based on the uniform node set in [13] to the quasi-uniform

distribution of the infinite scattered node set. By constructing the suitable "bell shape"

basis function and using the convolution equation, Yoon [14] gives an integral form of

the quasi-interpolant which is based on the scattered node set. The constructed quasi-

interpolants based on the scattered node set in these papers not only need the function

information at the scattered node but also need the function information at uniform node

or all the information of the approximated function. This still limits the application of

these methods. Wu and Liu [15] use the generalized Strang-Fix condition which is related

to non-stationary quasi-interpolation, to extend their constructed quasi-interpolant based


