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Abstract. In this paper we consider the computation of some eigenpairs with small-

est eigenvalues in modulus of large-scale polynomial eigenvalue problem. Recently,

a partially orthogonal projection method and its refinement scheme were presented

for solving the polynomial eigenvalue problem. The methods preserve the structures

and properties of the original polynomial eigenvalue problem. Implicitly updating the

starting vector and constructing better projection subspace, we develop an implicitly

restarted version of the partially orthogonal projection method. Combining the implicit

restarting strategy with the refinement scheme, we present an implicitly restarted re-

fined partially orthogonal projection method. In order to avoid the situation that the

converged eigenvalues converge repeatedly in the later iterations, we propose a novel

explicit non-equivalence low-rank deflation technique. Finally some numerical experi-

ments show that the implicitly restarted refined partially orthogonal projection method

with the explicit non-equivalence low-rank deflation technique is efficient and robust.
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1. Introduction

We consider the polynomial eigenvalue problem of finding a scalar λ ∈ C and nontrivial

vectors x , y ∈ Cn such that

P(λ)x = 0, yH P(λ) = 0, (1.1)

where P(λ) = λdAd +λ
d−1Ad−1+ · · ·+λA1+A0 with the coefficient matrices Ai(0≤ i ≤ d)

being n× n large and sparse. The scalar λ and the associated nonzero vectors x and y are

called eigenvalue, right and left eigenvectors of the polynomial eigenvalue problem (1.1),

respectively. Together, (λ, x) or (λ, x , y) is called an eigenpair of the polynomial eigenvalue

problem (1.1). The problem is very general and includes the standard eigenvalue problem
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P(λ) = λI−A, the generalized eigenvalue problem P(λ) = λA−B, the quadratic eigenvalue

problem P(λ) = λ2A+ λB + C (see, e.g., [28]) and the cubic eigenvalue problem P(λ) =

λ3A3 +λ
2A2 +λA1 + A0 (see, e.g., [16]).

The polynomial eigenvalue problem arises from a remarkable variety of applications,

such as vibration analysis of viscoelastic systems [1], structural dynamic analysis [9], sta-

bility analysis of control systems [12], numerical simulation of quantum dots [17] and so

on. Considerable efforts have been devoted to the polynomial eigenvalue problem in the

literature. Gohberg et al. [8] established the mathematical theory concerning matrix poly-

nomials. Gohberg et al. [7], Higham and Tisseur et al. [5, 13], and Chu [4] developed

the perturbation theory for the polynomial eigenvalue problem. Tisseur et al. [10, 27],

Lawrence and Corless [20] analyzed backward error of the polynomial eigenvalue prob-

lem.

In this paper, we consider the computation of some eigenpairs with smallest eigenval-

ues in modulus of the polynomial eigenvalue problem (1.1). If the coefficient matrix A0 is

singular, then 0 is an eigenvalue of the polynomial eigenvalue problem (1.1), and therefore

we assume that A0 is nonsingular or, equivalently, 0 is not an eigenvalue of the polynomial

eigenvalue problem (1.1). If some largest magnitude eigenvalues of the polynomial eigen-

value problem (1.1) are desired, we need only to invert the order of the coefficient matrices

Ai(0≤ i ≤ d) in P(λ).

The classical approach for solving the polynomial eigenvalue problem is linearizing

the problem (1.1) to produce an equivalent larger generalized eigenvalue problem (see,

e.g., [8, 11, 21, 22]), solved using any appropriate eigensolver. The way of linearization is

not unique. Using the second companion form of linearization [8], we may convert the

polynomial eigenvalue problem (1.1) into the following generalized eigenvalue problem

C y = θG y, (1.2)

where θ = 1/λ,
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Since A0 is nonsingular, the generalized eigenvalue problem (1.3) may be further reduced

to the following standard eigenvalue problem

�

G−1C
�

y = θ y, (1.4)


