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Abstract. Based on various matrix decompositions, we compare different techniques

for solving the inverse quadratic eigenvalue problem, where n× n real symmetric ma-

trices M , C and K are constructed so that the quadratic pencil Q(λ) = λ2M + λC + K

yields good approximations for the given k eigenpairs. We discuss the case where M is

positive definite for 1≤ k ≤ n, and a general solution to this problem for n+1≤ k ≤ 2n.

The efficiency of our methods is illustrated by some numerical experiments.
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1. Introduction

For n × n complex matrices M , C and K , the quadratic eigenvalue problem (QEP)

involves finding the eigenpairs (λ, x) such that Q(λ)x = 0, where

Q(λ) = Q(λ; M , C , K) = λ2M +λC + K (1.1)

is a so-called quadratic pencil defined by M , C and K . The scalars λ and the correspond-

ing nonzero vectors x are the eigenvalues and eigenvectors of the pencil, respectively. It

is known that the QEP has 2n finite eigenvalues over the complex field, provided that

the leading matrix coefficient M is nonsingular. The "direct" problem is of course to find

the eigenvalues and eigenvectors when the coefficient matrices M , C and K are given

(cf. [5] and references therein), while the inverse quadratic eigenvalue problem (IQEP) is

to determine the matrix coefficients M , C and K from a prescribed set of eigenvalues and

eigenvectors (cf. [16] and references therein).
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The IQEP has received much attention because of the wide variety of its applications —

including structural design [9], control design for second-order systems [6,16], finite ele-

ment model updating for damped or gyroscopic systems [7], system identification [1] and

inverse problems for damped vibration systems [12]. Some general reviews and extensive

bibliographies in this regard can be found in Refs. [3] and [4].

The formulation of an IQEP depends upon the type of eigen-information available, the

conditions imposed upon the matrix coefficients, and the techniques used to decompose

the matrix constituted by the given eigenvectors. The IQEP studied by Ram & Elhay [17]

is for symmetric tridiagonal coefficients where instead of prescribed eigenpairs, two sets

of eigenvalues are given. Based on the spectral theory of matrix polynomials, Lancaster

et al. [8, 11, 13] considered the IQEP with: (1) Hermitian matrices M , C and K , (2) real

symmetric matrices M , C and K , and (3) real symmetric positive definite or semi-definite

matrices M , C and K , so that the quadratic pencil Q(λ) has complete information on the

eigenvalues and eigenvectors. We deal with the inverse problem with k given eigenpairs,

where M is required to be real symmetric positive definite, and C and K are n × n real

symmetric matrices. For 1 ≤ k ≤ n, Yuan et al. [18] gave a detailed discussion involving

QR decomposition, while for n+1≤ k ≤ 2n Kuo et al. [10] studied the general solution to

this problem with QR decomposition.

Our main concern is as follows: for a given eigen-information pair (Λ, X ), find real

symmetric matrices M , C and K where M is positive definite such that

MXΛ2 + CXΛ+ KX = 0 (1.2)

is satisfied. Our motivation is to find a more efficient method to solve this problem, and

the techniques we investigate below are the Rank Revealing QR (RRQR), SV D and UT V

factorizations where U and V are orthogonal matrices, while T is an upper-two-diagonal

matrix.

Since M , C and K are in Rn×n, we can transform the given complex eigenpairs into

real eigenpairs. To facilitate the discussion, let the real eigenpairs constitute the pair of

matrices (Λ, X ) ∈ Rk×k×Rn×k such that

Λ = diag
n

λ
[2]
1 , · · · ,λ[2]

l
,λ2l+1, · · · ,λk

o

, (1.3)

with

λ
[2]

j
=

�

α j β j

−β j α j

�

∈ R2×2, β j 6= 0 for j = 1,2, · · · , l (1.4)

and

X =
�

x1R, x1I , · · · , x lR, x l I , x2l+1, · · · , xk

	

, (1.5)

where x iR and x iI denote the real and imaginary parts of the corresponding eigenvector,

respectively. Then the original eigenpairs can be described by the matrices

Λ̃ = RHΛR= diag
�

λ1,λ2, · · · ,λ2l−1,λ2l ,λ2l+1, · · · ,λk

	


