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Abstract. This paper discusses the development of an invariant finite difference scheme

to simulate the microphase separation of copolymers in one-dimensional thin liquid

films. The film phenomena are modelled using two-phase shallow water equations and

the Ohta–Kawasaki potential, which governs the phase separation of the copolymer.

Non-positive volume fractions and spurious oscillations are eventually eliminated, in

simulating the one-dimensional phase separation lamellar pattern.
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1. Introduction

Phase separation of copolymer films is important for the fabrication of templates of

quantum dots, nanowires, and nanopores in nanotechnology [1]. It has been shown that

the phase separation of polymers is a flow phenomenon that can be modelled as a two-

phase flow [2, 3]. However, the phase separation of a copolymer is qualitatively different

from that of a polymer blend (a mixture of homopolymers), where the phase separation

is a macroscopic phenomenon that ultimately forms a single circle [4]. A copolymer con-

sists of two connected chemically different homopolymers, where phase separation cannot

proceed on a macroscopic scale but is periodic on a microscopic scale and therefore often

called microphase separation, governed by the Ohta-Kawasaki potential [5].

Microphase separation in a one-dimensional thin liquid film may be simulated by in-

variant finite difference schemes that highly resolve the interface region of the phase sep-

aration. However, the copolymer volume fractions do not remain positive in the later

stages of some simulations, and spurious surface oscillations can be induced by conven-

tional counter-measures. These drawbacks are addressed in this paper. The mathematical

modelling is discussed in Section 2 and Section 3, the invariant finite difference scheme

adopted in Section 4, and the subsequent simulations and conclusions in Section 5 and

Section 6. The piecewise polynomial method (PPM) invoked is briefly discussed in the

Appendix.
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2. Two-Phase Flow in the Liquid Film

2.1. Two-phase shallow water equations

The relevant one-dimensional two-phase shallow water equations are [4]
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αd +αc = 1 . (2.5)

Here x is the space coordinate and t the time, α denotes a volume fraction, u a velocity, ρ

a density, f a force of phase separation, with the suffix d denoting a minor phase and c a

major phase such that ρm = αdρd+αcρc is the density of the mixture (the suffix m denotes

the mixture), h is the height of the liquid film, g denotes gravity, and ν is the kinematic

viscosity. Reference may also be made to Refs. [6,7], for detailed discussions of the shallow

water approximation in the two-fluid model. The unknowns are the two volume fractions,

the two velocities, and the height. The equation for the height is immediately obtained by

adding Eqs. (2.1) and (2.2), and invoking Eq. (2.5).

In thin liquid films, gravity can be ignored and the pressure is disjoining rather than

hydrostatic — i.e. thin liquid films are attracted to the substrate by the pressure caused by

the van der Waals force. This disjoining pressure is [8,9]
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where A is the Hamaker constant of the mixture and h = h0 + h′, with the suffix denoting

the constant state and the prime the perturbation.

We assume the Hamaker constant is approximately the same for each phase, and that

the form of the relevant two-phase shallow water equations is not altered on using the

disjoining pressure and replacing ρmg by the corresponding pressure gradient A/(2πh4
0).

2.2. The phase separation potential

As previously mentioned, the Ohta–Kawasaki potential governs the phase separation

of the copolymer, involving both short-range and long-range interactions [5]. The short-

range interaction is modelled by the Ginzburg–Landau potential (as for polymer blends)

but the long-range interaction is a Coulomb type, so we adopt
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